Abstract:
Systems and methods are provided for separating a feedstock into a plurality of separation products using dividing wall column technology that includes a plurality of dividing walls. Including a plurality of dividing walls in the column can provide reduced energy consumption and reduced equipment footprint for production of a plurality of high purity distillation products. The systems and methods can allow for separation of a large number of products from a feed while having a reduced or minimized number of liquid splits and/or vapor splits.
Abstract:
An improved separator for desalting petroleum crude oils which may be operated in a continuous manner under automatic control; the improved desalter is therefore well suited to modern refinery operation with minimal downtime. A portion of the emulsion layer is withdrawn from the desalter through external withdrawal ports according to the thickness and position of the emulsion layer with the selected withdrawal header(s) being controlled by sensors monitoring the position and thickness of the emulsion layer. The withdrawn emulsion layer can be routed as such or with the desalter water effluent to a settling tank or directly to another unit for separation and reprocessing.
Abstract:
A petroleum desalting process in which the oil/water emulsion layer which forms in the desalter vessel between the settled water layer and the settled oil layer is separated into the oil and water components by contact with a heated high boiling hydrocarbon to break the emulsion and vaporize water from the emulsion in a flash drum. The vessel has an emulsion outlet for removing an emulsion stream from the emulsion layer and a conduit connecting the emulsion withdrawal port to an inlet of an optional settling drum to effect and initial separation into an oil-enriched phase and a water phase with the oil-enriched phase led to the flash drum.
Abstract:
A petroleum desalting process in which the oil/water emulsion layer which forms in the desalter vessel between the settled water layer and the settled oil layer is separated into the oil and water components by contact with a heated high boiling hydrocarbon to break the emulsion and vaporize water from the emulsion in a flash drum. The vessel has an emulsion outlet for removing an emulsion stream from the emulsion layer and a conduit connecting the emulsion withdrawal port to an inlet of an optional settling drum to effect and initial separation into an oil-enriched phase and a water phase with the oil-enriched phase led to the flash drum.
Abstract:
An improved method and process unit for desalting petroleum crude oils in which a portion of the stable emulsion layer which forms in the desalter vessel is withdrawn from the desalter and diluted with a liquid diluent, typically oil or water or both to destabilize the emulsion which is then separated into separate oil and water phases.
Abstract:
An improved method and process unit for desalting petroleum crude oils in which a portion of the stable emulsion layer which forms in the desalter vessel is withdrawn from the desalter and diluted with a liquid diluent, typically oil or water or both to destabilize the emulsion which is then separated into separate oil and water phases.
Abstract:
An improved separator for desalting petroleum crude oils which may be operated in a continuous manner under automatic control; the improved desalter is therefore well suited to modern refinery operation with minimal downtime. A portion of the emulsion layer is withdrawn from the desalter through external withdrawal ports according to the thickness and position of the emulsion layer with the selected withdrawal header(s) being controlled by sensors monitoring the position and thickness of the emulsion layer. The withdrawn emulsion layer can be routed as such or with the desalter water effluent to a settling tank or directly to another unit for separation and reprocessing.
Abstract:
Vane type mist eliminator segments are arranged in a plurality of tiers at separate vertically spaced locations in a tower, typically of the upright, cylindrical type, with the eliminator at each tier covering only a portion of the cross section of the tower. The eliminator segment(s) in each tier are laterally displaced in the tower from the adjacent vertically spaced eliminator segments to form a staggered configuration for the segments. Each mist eliminator preferably extends over 50-70% of the cross-sectional area of the tower to leave an open flow passage in the tier; the staggering of the segments and the associated flow passages defines an upward tortuous or zig-zag open flow path for vapors ascending the tower through the open flow passages when the eliminator segment(s) become fouled in use.