摘要:
The invention is directed to the preparation of vinyl sulfide compounds of general formula —(—R1—S—R4C═CR5—R3—S—)n—(—R2—S—R4C═CR5—R3—S—)m, where m and n are integers in the range of 1-1000, are formed by the addition of a dithiol compound of general formula HS—R1—SH to an acetylenic compound of general formula HC≡C—R3—S—R2≡S—R3—C—CH2. These vinyl sulfide compounds can be homopolymerized or copolymerized with second monomers, oligomers or polymers that are capable of reacting with their carbon-carbon double bond. The vinyl sulfide compounds have a high refractive index (1.60 or higher at 632 nm) and can be used to make optical telecommunication elements and devices. They are soluble in selected solvents and such solutions can be applied to substrates by various methods such as spin coating, dipping, spraying and other methods known in the art.
摘要:
A curable composition and a process for using the curable composition within a grating-coupled waveguide (GCW) sensor are disclosed. The composition can be used for facile replication of optical components, specifically those used in a label-independent detection system where operation of the waveguide is dependent on the detailed formation of micro and nano size patterns. The photo or electron beam curable composition has low viscosity (≦500 cPs) and cures to an optically clear material with high glass transition temperature (≧70° C.), low shrinkage on cure, low outgassing, and low extractables.
摘要:
A curable composition and a process for using the curable composition within a grating-coupled waveguide (GCW) sensor are disclosed. The composition can be used for facile replication of optical components, specifically those used in a label-independent detection system where operation of the waveguide is dependent on the detailed formation of micro and nano size patterns. The photo or electron beam curable composition has low viscosity (≦500 cPs) and cures to an optically clear material with high glass transition temperature (≦70° C.), low shrinkage on cure, low outgassing, and low extractables.
摘要:
Ultraviolet radiation-curable primary coating compositions for optical fibers are disclosed. The primary coatings comprise a polyether polyol-based reactively terminated aliphatic urethane oligomer; one or more diluent monomers terminated with at least one end group capable of reacting with the reactive terminus of the oligomer; an organofunctional silane adhesion promoter; and an optional photoinitiator. Also disclosed are optical fibers coated with the coatings of the invention, and processes for preparing same.
摘要:
Ultraviolet radiation-curable primary and secondary coating compositions for optical fibers are disclosed. The primary coatings comprise a hydrocarbon polyol-based reactively terminated aliphatic urethane oligomer; a hydrocarbon monomer terminated with at least one end group capable of reacting with the terminus of the oligomer; and an optional photoinitiator. The secondary coatings comprise a polyester and/or polyether-based aliphatic urethane reactively terminated oligomer; a hydrocarbonaceous viscosity-adjusting component capable of reacting with the reactive terminus of (I); and an optional photoinitiator. Also disclosed are optical fibers coated with the secondary coating alone or with the primary and secondary coatings of the invention.
摘要:
Ultraviolet radiation-curable primary and secondary coating compositions for optical fibers are disclosed. The primary coatings comprise a hydrocarbon polyol-based acrylated or methacrylated aliphatic urethane oligomer; an alkyl acrylate or methacrylate monomer; a refractive index modifying monomer or oligomer; a silane adhesion promoter; and a photoinitiator. The secondary coatings comprise a polyester-based aliphatic urethane acrylate or methacrylate oligomer; an acrylated or methacrylated compound; and a photoinitiator. Also disclosed are optical fibers coated with the secondary coating alone or with the primary and secondary coatings of the invention.
摘要:
A curable composition and a process for using the curable composition within a grating-coupled waveguide (GCW) sensor are disclosed. The composition can be used for facile replication of optical components, specifically those used in a label-independent detection system where operation of the waveguide is dependent on the detailed formation of micro and nano size patterns. The photo or electron beam curable composition has low viscosity (≦500 cPs) and cures to an optically clear material with high glass transition temperature (≦70° C.), low shrinkage on cure, low outgassing, and low extractables.
摘要:
A curable composition and a process for using the curable composition within a grating-coupled waveguide (GCW) sensor are disclosed. The composition can be used for facile replication of optical components, specifically those used in a label-independent detection system where operation of the waveguide is dependent on the detailed formation of micro and nano size patterns. The photo or electron beam curable composition has low viscosity (≦500 cPs) and cures to an optically clear material with high glass transition temperature (≧70° C.), low shrinkage on cure, low outgassing, and low extractables.
摘要:
Optical fiber ribbons comprise at least two optical fiber subunit ribbons encapsulated within a radiation cured encapsulating material. The radiation cured encapsulating material allows separation of the subunit ribbons by hand tearing of the encapsulating material and adheres to the subunit ribbons upon twisting of the optical fiber ribbon. The radiation cured encapsulating material preferably has a tear resistance of less than about 2.20 pounds force and an adhesion force to an underlying surface material of greater than about 0.0044 pounds force.
摘要:
The invention provides an organic/inorganic hybrid material with a high refractive index at telecommunications wavelengths. Energy curable compositions of the present invention include condensed metal oxide nanoparticles, a high refractive index organometallic coupling agent, an energy curable organometallic coupling agent, and a high refractive index monomer or oligomer. Polymeric materials of the present invention include condensed metal oxide nanoparticles having a mixture of organometallic coupling agents covalently bound to the exterior surface of the nanoparticles and a high refractive index solid polymer matrix, wherein the mixture of organometallic coupling agents includes a high refractive index coupling agent, and a coupling agent covalently bound to the polymer matrix. The materials of the present invention are useful in making optical devices for telecommunications applications.