Abstract:
A hand for transferring a transfer target can be selected even when the combination of the transfer target and the hand is not taught. A machine learning device includes: state observation means for acquiring at least a portion of image data obtained by imaging a transfer target as input data; label acquisition means for acquiring information related to grasping means attached to a robot for transferring the transfer target as a label; and learning means for performing supervised learning using a set of the input data acquired by the state observation means and the label acquired by the label acquisition means as teacher data to construct a learning model that outputs information related to the grasping means appropriate for the transferring.
Abstract:
In the past, sometimes a robot was made to unnecessarily retract. Therefore, this robot control device comprises a contact judging part which judges if the robot has contacted an object based on external force which is detected by the sensor, a stop command part which makes the robot stop when it is judged that the robot has contacted the object, a continuous contact judging part which judges if the robot continues to contact the object after making the robot stop, and a retraction command part which makes the robot retract in a direction away from the object when it is judged that the robot continues to contact the object.
Abstract:
A teaching device is provided with: a setting information storage unit for storing setting information defining a position and an attitude of a force sensor relative to a coordinate system set in a robot; and a virtual image superimposing and displaying unit for superimposing and displaying a virtual image in a real space including the robot or a prescribed object supporting the force sensor, or in a virtual space including a model of the robot or a model of the prescribed object, in such a way that a virtual image representing the force sensor adopts a position and an attitude corresponding to the setting information in the real space or the virtual space.
Abstract:
A cell controller includes a first communication unit which receives a task program and signal setting information stored in each manufacturing machine from this manufacturing machine, a stop detection unit which refers to the task program and the signal setting information to detect whether a production facility has stopped operation, and a stop cause identification unit which analyzes the task program and the signal setting information to identify the manufacturing machine that has caused the operation stop of the production facility, and this cause. Such a cell controller can detect whether a production facility including manufacturing machines has stopped operation, and automatically identify the manufacturing machine that has caused this operation stop, and this cause.
Abstract:
A fault diagnostic device comprises an arithmetic processing device configured to judge a fault on the basis of an image captured by the camera. The arithmetic processing device includes an imaging command part configured to transmit a command for capturing the image of a diagnosis portion and a judgement part configured to judge whether or not the diagnosis portion has the fault. A storage part stores a reference image when the diagnosis portion is in a normal state. The imaging command part transmits an imaging command so as to capture the image of the diagnosis portion after changing a position and a posture of the robot. The judgement part compares the image of the diagnosis portion captured by the camera with the reference image and judges the fault in the diagnosis portion.
Abstract:
A robot system comprises an intrusion detector which detects that a person has entered into a monitoring area established around a robot, an installation table which supports the robot, a light emitting device which brightens a surface of the installation table, and a control device which receives a signal outputted by the intrusion detector and controls the light emitting device. The control device causes the light emitting device to emit light when it is detected that the person has entered into the monitoring area.
Abstract:
A control device includes an estimated torque calculation unit, an actual torque calculation unit, a torque comparison unit, and a stop unit. The estimated torque calculation unit calculates an estimated torque for maintaining the posture of an automatic machine based on preset load information when the machine is in a resting state in which its posture is maintained by a torque applied by a servomotor. The actual torque calculation unit calculates an actual torque actually applied to maintain the posture. The torque comparison unit compares an error between the estimated and actual torques with a predetermined first threshold. The stop unit stops subsequent operations of the automatic machine when the error is greater than the first threshold.
Abstract:
Provided is a laser brazing system that can collectively control a robot and devices such as a laser oscillator and a wire feeding device and that can also collectively display the state of the robot and the state of the devices. A laser brazing system 1 that comprises a gas supply device 16, a wire feeding device 17, a laser oscillator 15, a robot 12 that supports a wire feeding nozzle 14 and a laser processing head 13 on the tip of an arm 121, and a robot control device 10 that controls the robot 12. In addition to the robot 12, the robot control device 10 of the laser brazing system 1 controls the wire feeding device 17, the gas supply device 16, and the laser oscillator 15 and has an operation panel 11 that includes a display unit 112 that can display the state of at least one of the wire feeding device 17, the gas supply device 16, and the laser oscillator 15.
Abstract:
A complicated motion program is taught, in a simple manner, to a lead-through teachable robot. Provided is a teaching apparatus for a robot, the teaching apparatus being provided with: a movement-instruction input portion that is attached to the robot and with which a movement instruction for the robot is input; and a command input portion with which it is possible to set at least one of a movement-trajectory defining command, a standby command, a speed-changing command, and a work-condition changing command at an arbitrary position on a movement pathway of the robot in a direction that corresponds to the movement instruction input via the movement-instruction input portion.
Abstract:
A cell controller includes an inside information acquiring unit for acquiring the inside information of the plurality of manufacturing machines, and an inside information comparing unit which compares, with regard to a first manufacturing machine and a second manufacturing machine, which are selected by the comparison object selecting unit, first inside information and second inside information, which are acquired, and the inside information comparing unit extracting a difference therebetween. The cell controller also includes an abnormality cause finding unit for finding a cause of an abnormality that occurs in the first manufacturing machine or the second manufacturing machine, based on the difference, and an abnormality cause conveying unit for conveying the cause of the abnormality to the outside of the cell controller.