Abstract:
Provided are embodiments including a system for automatically generating a plan of scan locations for performing a scanning operation where the system includes a storage medium that is coupled to a processor. The processor is configured to receive a map of an environment, apply a distance transform to the map, wherein the distance transform determines a path through the map, wherein the path comprises a plurality of points, and identify a set of candidate scan locations based on the path. The processor is also configured to select scan locations from the set of candidate scan locations for performing 3D scans, and perform the 3D scans of the environment based on the selected scan locations. Also provided are embodiments for a method and computer program product for automatically generating a plan of scan locations for performing a scanning operation.
Abstract:
Aspects of the present disclosure provide a system for measuring an object, the system including a plurality of frame segments. The frame segments are configured to mechanically couple together to form a frame. The plurality of frame segments includes a plurality of measurement device link segments and each of the plurality of measurement device link segments includes a measurement device which together form a plurality of measurement devices having a field of view within or adjacent to the frame. Each of the plurality of measurement devices is operable to measure three-dimensional (3D) coordinates for a plurality of points on the object. The system further includes a computing device to receive data from the plurality of measurement devices via a network established by the plurality of measurement device link segments.
Abstract:
An actuator may include a stator supporting a magnet; a stationary pole; and a bobbin supporting a winding of a coil, the bobbin being coaxial with the stator and stationary pole, and positioned inside the magnet and outside the stationary core. A gap may be provided between the bobbin and the stationary pole. A beam steering mechanism may include a mirror; a frame; a pivot anchor fixed to the frame and connected to the mirror; and an actuator. An output end of the actuator may be connected to the rear surface. A beam steering mechanism may alternatively include a flexure; a mirror attached to the flexure; a frame; supports fixed to the frame and the flexure; a pivot anchor fixed to the frame and connected to the mirror or the flexure; and an actuator. An output end of the actuator may be connected to the flexure.
Abstract:
A three-dimensional (3D) measuring device includes a cooling fan and an enclosure attached to a projector and a camera. The camera images a pattern of light projected by the projector onto an object to determine 3D coordinates points on the object. A fan draws air through an opening in the front of the enclosure, across a plurality of components in the enclosure and out a second opening in the enclosure.
Abstract:
A system and method for coordinate measurement is provided. The system includes a laser tracker and a moveable articulated-arm coordinate measuring machine (AACMM). The AACMM has an articulated arm with a probe end and an actuator. A retroreflector is coupled to the probe end. When the AACMM is in a first position, the system emits a laser beam and measures a position of the retroreflector while the AACMM also measures the position of retroreflector. When the AACMM is in a second position, and based on an activation of the at least one actuator by an operator, the system transmits a signal from the AACMM to the laser tracker and rotates the laser tracker towards the second position in response to the laser tracker receiving the signal. A means for transforming the first or second coordinate system to a common coordinate frame of reference is provided.
Abstract:
A portable articulated arm coordinate measurement machine, comprising: a manually positionable articulated arm having opposed first and second ends, the articulated arm including a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal; a base section connected to the second end; and a probe assembly including a probe end and a handle; wherein the probe assembly is connected to the first end; wherein the handle contains electronics that include a processor; wherein the handle is configured to be gripped by a hand; and wherein the articulated arm coordinate measurement machine is configured to measure a three-dimensional coordinate of a point in space associated with the probe end.
Abstract:
Techniques for localizing a portable articulated arm coordinate measuring machine (AACMM) are described. An example localization method includes in response to an AACMM base being placed at a first position, capturing a first set of images of a positioning element in a predetermined area. The method further includes determining first 3D coordinates of the positioning element using the first set of images. 3D coordinates corresponding to a position of a first measurement probe in the predetermined area are computed using the first 3D coordinates. Further, the method includes, in response to the base being moved to a second position, determining second 3D coordinates of the positioning element from the second position using a second set of images. Further, the localization method includes determining a translation matrix to convert the second 3D coordinates to the first 3D coordinates.
Abstract:
Techniques for localizing a portable articulated arm coordinate measuring machine (AACMM) are described. An example localization method includes in response to an AACMM base being placed at a first position, capturing a first set of images of a positioning element in a predetermined area. The method further includes determining first 3D coordinates of the positioning element using the first set of images. 3D coordinates corresponding to a position of a first measurement probe in the predetermined area are computed using the first 3D coordinates. Further, the method includes, in response to the base being moved to a second position, determining second 3D coordinates of the positioning element from the second position using a second set of images. Further, the localization method includes determining a translation matrix to convert the second 3D coordinates to the first 3D coordinates.
Abstract:
A system and method of generating a two-dimensional (2D) image of an environment is provided. The system includes a housing having a body and a handle. A 2D scanner is disposed in the body and has a light source, an image sensor and a controller, the light source steers a beam of light within a first plane to illuminate object points in the environment. The image sensor is arranged to receive light reflected from the object points and the controller determines a distance value to at least one of the object points. An inertial measurement unit is provided having a 3D accelerometer and a 3D gyroscope. One or more processors are responsive to executable instructions for generating a 2D image of the environment in response to an activation signal from an operator and based at least in part on the distance values and the signal.
Abstract:
A portable articulated arm coordinate measurement machine is provided. An articulated arm is provided having a plurality of arm segments. Each arm segment includes an angular encoder for producing a signal corresponding to an angle of rotation. A shaft rotates which about an axis is attached to an inner portion of a first and second bearing. A patterned disk is attached to the shaft. A housing is attached to an outer portion of the first and second bearing. A read head is attached to the housing in proximity to the patterned disk which produces an electrical signal in response to an angle of rotation. The patterned disk and the first arm segment supported for rotation about the axis by only the first and second bearing. A circuit receives the electrical signal and provides an angle and data corresponding to a position of the probe.