Abstract:
In this invention, chromatography is integrated on a centrifugal platform to enable low-cost automated purification. Differing from the traditional chromatography method, purification and separation of a centrifugal compound collecting platform disclosed in the present invention mainly uses a centrifugal force to drive the fluid to flow outward in the radial direction when the motor rotates. The compounds to be separated react with the column packing during the flow, and the compounds with different polarities in the sample are gradually separated. The flow of the fluid can be governed by the motor and the geometry of the fluidic design such that compounds with different characteristics can be separated and collected in different collecting chambers.
Abstract:
The present disclosure relates to a microfluidic-based analyzer, including a drive module and a microfluidic disc. On the microfluidic disk, a capillary is connected between a mixing chamber and a waste chamber. More particularly, the capillary is connected to the mixing chamber through a first access on the first radius of the microfluidic disc, and the capillary is connected to the waste chamber through a second access on the second radius of the microfluidic disk. Specifically, a turn of the capillary is disposed between the first access and the second access, in which a folding is configured on a third radius of the microfluidic disc. Overall, the aforementioned microfluidic-based analyzer is able to be operated in different rotational speeds and is capable of evacuating the mixing chamber and enhancing the washing efficiency.
Abstract:
The invention provides an apparatus and methodology to carry out biochemical testing on a centrifugal platform using flow splitting technique. In conventional biochemical testing, reagents need to be loaded individually into each reservoir. By using the flow splitting technique in this invention, one reagent only need to be loaded once, then, it can be evenly distributed into each reaction chambers in single or multiple layers format. The invention greatly reduces the required manpower when large numbers of assays are integrated on one platform. Because of the invention, many medical examinations can be performed efficiently, thus reduce the waste of manpower, time and cost.
Abstract:
The invention provides a viscometer and an operation method thereof. The viscometer comprises a disk and at least one microfluidic structure. The microfluidic structure is embedded in the disk and has a first chamber which is connected to a second chamber. The second chamber is provided with an annular chamber along the circumferential direction of the disk and comprises at least one indicator. Overall, the present viscometer and its operation method do utilize the oscillation amplitude of pendulum motion of the indicator to calculate a viscosity value (cP) of a sample which has already existed in the second chamber.