SURFACE COUPLED LASER AND LASER OPTICAL INTERPOSER

    公开(公告)号:US20210109301A1

    公开(公告)日:2021-04-15

    申请号:US15929861

    申请日:2020-05-26

    Abstract: An example system includes a grating coupled laser, a laser optical interposer (LOI), an optical isolator, and a light redirector. The grating coupled laser includes a laser cavity and a transmit grating optically coupled to the laser cavity. The transmit grating is configured to diffract light emitted by the laser cavity out of the grating coupled laser. The LOI includes an LOI waveguide with an input end and an output end. The optical isolator is positioned between the surface coupled edge emitting laser and the LOI. The light redirector is positioned to redirect the light, after the light passes through the optical isolator, into the LOI waveguide of the LOI.

    Adiabatically coupled photonic systems with vertically tapered waveguides

    公开(公告)号:US10802214B2

    公开(公告)日:2020-10-13

    申请号:US16212355

    申请日:2018-12-06

    Abstract: In an example, a photonic system and method include a photonic integrated circuit (PIC) including a silicon (Si) waveguide and a first silicon nitride (SiN) waveguide. The system also includes an interposer including a second SiN waveguide including vertical tapers on the second SiN waveguide by increasing a thickness of the second SiN waveguide in a direction toward the first SiN waveguide to allow an adiabatic optical mode transfer and decreasing the thickness of the second SiN waveguide in a direction away from the first SiN waveguide to inhibit the optical mode transfer.

    Adiabatic polarization rotator combiner

    公开(公告)号:US10768366B2

    公开(公告)日:2020-09-08

    申请号:US16559474

    申请日:2019-09-03

    Abstract: A system may include a polarization rotator combiner. The polarization rotator combiner may include a first stage, a second stage, and a third stage. The first stage may receive a first component of light with a TE00 polarization and a second component of light with the TE00 polarization. The first stage may draw optical paths of the first and second components together. The second stage may receive the first component and the second component from the first stage. The second stage may convert the polarization of the second component from the TE00 polarization to a TE01 polarization. The third stage may receive the first component and the second component from the second stage. The third stage may convert polarization of the second component from the TE01 polarization to a TM00 polarization. The third stage may output the first component and output the second component.

    SPLIT OPTICAL FRONT END RECEIVERS
    8.
    发明申请

    公开(公告)号:US20190109649A1

    公开(公告)日:2019-04-11

    申请号:US16157946

    申请日:2018-10-11

    CPC classification number: H04B10/671 H04B10/69

    Abstract: An optical receiver with improved dynamic range may include at least one directional coupler having at least one input configured to couple to an optical fiber. The optical receiver may include a first signal path including a first photodetector coupled to an output of the at least one directional coupler, a first transimpedance amplifier (TIA) including an input coupled to the first photodetector, and an adder coupled to an output of the first TIA. The optical receiver may include a second signal path including a second photodetector coupled to an output of the at least one directional coupler, a second TIA including an input coupled to the second photodetector, and the adder coupled to an output of the second TIA. Further, the optical receiver may include an optical power sensing circuit coupled to at least one of the first TIA, the second TIA, and the adder.

    Adiabatically coupled optical system

    公开(公告)号:US10132997B2

    公开(公告)日:2018-11-20

    申请号:US15596958

    申请日:2017-05-16

    Abstract: An optical system includes a silicon (Si) substrate, a buried oxide (BOX) layer formed on the substrate, a silicon nitride (SiN) layer formed above the BOX layer, and a SiN waveguide formed in the SiN layer. In some embodiments, the optical system may additionally include an interposer waveguide adiabatically coupled to the SiN waveguide to form a SiN-interposer adiabatic coupler that includes at least the tapered section of the SiN waveguide, the optical system further including at least one of: a cavity formed in the Si substrate at least beneath the SiN-interposer adiabatic coupler or an oxide overlay formed between a top of a SiN core of the SiN waveguide and a bottom of the interposer waveguide. Alternatively or additionally, the optical system may additionally include a multimode Si—SiN adiabatic coupler that includes a SiN taper of a SiN waveguide and a Si taper of a Si waveguide.

Patent Agency Ranking