Abstract:
Battery state of charge control systems and methods provide techniques to assist in managing battery capacity and battery life under various environmental, operating, and storage conditions. Dynamic management of desired battery SOC based on one or more parameters associated with usage patterns and environmental conditions, e.g., charge/discharge patterns, state of charge and/or temperature during storage may extend useful battery life. The present techniques can provide active state of charge monitoring and control to manage battery capacity during storage or other periods of non-use over the battery life to enhance battery performance.
Abstract:
A battery management system for a vehicle includes a controller programmed to charge a battery at a predetermined charge rate. The controller discharges the battery for a predetermined time in response to a terminal voltage of the battery exceeding a predetermined voltage limit that results in a reduced charge rate. After discharging for the predetermined time, the controller resumes charging at the predetermined charge rate. A current magnitude during the discharge and the predetermined time may be based on factors including the predetermined charge rate, a battery temperature, and a charge current magnitude during charging.
Abstract:
A vehicle has a control system configured to perform, and a method for controlling a battery in a vehicle includes, the steps of modifying a state of charge of at least some battery cells in the battery, based on: a vehicle idle state, and the battery having at least a predetermined decay rate. The SOC of the at least some battery cells is modified such that the battery has less than the predetermined decay rate after the SOC is modified.
Abstract:
A battery management system for a vehicle includes a controller programmed to apply a current pulse to reverse a current flow through a battery to reduce or remove cell polarization. After the current pulse, an open-circuit voltage is measured as the terminal voltage of the battery. The settling time for the terminal voltage to approach the open-circuit voltage is reduced after the current pulse. The magnitude of the current pulse is based on a battery state of charge, a battery temperature, and a current magnitude prior to the current pulse.
Abstract:
A battery management system for a vehicle includes a controller programmed to charge a battery at a predetermined charge current. The controller activates an electrical load to discharge the battery for a predetermined time in response to a charge current of the battery becoming less than the predetermined charge current at a predetermined voltage limit. After discharging for the predetermined time, the controller resumes charging at the predetermined charge current. A current magnitude during the discharge and the predetermined time may be based on factors including the predetermined charge rate, a battery temperature, and a charge current magnitude during charging.
Abstract:
A battery management system for a vehicle includes a controller programmed to apply a current pulse to reverse a current flow through a battery to reduce or remove cell polarization. After the current pulse, an open-circuit voltage is measured as the terminal voltage of the battery. The settling time for the terminal voltage to approach the open-circuit voltage is reduced after the current pulse. The magnitude of the current pulse is based on a battery state of charge, a battery temperature, and a current magnitude prior to the current pulse.
Abstract:
A vehicle has a control system configured to perform, and a method for controlling a battery in a vehicle includes, the steps of modifying a state of charge of at least some battery cells in the battery, based on: a vehicle idle state, and the battery having at least a predetermined decay rate. The SOC of the at least some battery cells is modified such that the battery has less than the predetermined decay rate after the SOC is modified.