Abstract:
A diagnostic method for contact resistance failure includes estimating electrical contact surface resistance of at least one contactor, determining a faulted status of the at least one contactor and indicating the faulted status of the at least one contactor if the at least one contactor is in the faulted status.
Abstract:
Systems and methods for operating a battery pack supplying power to propel a vehicle are disclosed. One example method comprises, adjusting a battery pack state of charge window in response to vehicle mass. Adjusting the battery pack state of charge window in response to vehicle mass may allow the battery pack to provide an increased amount of energy to a motor so that the motor may provide torque to a driveline for a longer period of time and/or absorb more vehicle generator produced power during vehicle operations.
Abstract:
Lithium ion battery state of charge (SOC) is a function of open circuit voltage (OCV). Battery internal diffusion process needs to be nearly completed to be able to measure battery open circuit voltage. The length of the minimum settling time depends on the battery type, usage and temperature. Described are methods to determine electric vehicle battery voltage relaxation time based on battery temperature and usage history.
Abstract:
Systems and methods for operating a battery pack supplying power to propel a vehicle are disclosed. One example method comprises, determining a difference between an estimated battery pack temperature and a sensed battery pack temperature as a basis for adjusting battery pack output power. The method also includes adjusting a speed of a cooling fan based on the difference between estimated battery pack temperature and sensed battery pack temperature.
Abstract:
A current sensor fault detection system is disclosed which enables detection of a current sensor fault while the current sensor is operating and providing a current sensor output which is within a normal operating range. The current sensor is monitored by at least one controller which compares a change in battery state of charge error with a predetermined threshold. The change in battery state of charge error is a difference between a first change in battery state of charge calculated by integrating battery current with respect to a time and a second change in battery state of charge calculated based on the battery open circuit voltage during the time.
Abstract:
An electric vehicle battery pack includes an array of battery cells each cell having an upper cell surface and a lower cell surface, the lower cell surface having a positive and a negative terminal; and a thermal assembly in thermally-conductive contact with the upper cell surfaces of the array. A battery pack cooling method is also disclosed.
Abstract:
A hybrid-electric vehicle includes a traction battery. A controller may operate the traction battery within certain state of charge and voltage limits. The controller may define a minimum operating voltage or state of charge below which no power may be requested from the traction battery. The minimum voltage and state of charge may be based on an electrical resistance of the traction battery. The voltage may also be based on a minimum power level required to crank the engine while meeting emissions standards. As the battery ages, the minimum voltage level may be adjusted such that the minimum power level is available at the minimum voltage level.
Abstract:
A current sensor fault detection system is disclosed which enables detection of a current sensor fault while the current sensor is operating and providing a current sensor output which is within a normal operating range. The current sensor is monitored by at least one controller which compares a change in battery state of charge error with a predetermined threshold. The change in battery state of charge error is a difference between a first change in battery state of charge calculated by integrating battery current with respect to a time and a second change in battery state of charge calculated based on the battery open circuit voltage during the time.
Abstract:
A vehicle includes a battery pack, an electric motor, and a contactor to electrically connect the pack and motor. The contactor is configured with a control circuit to electrically connect the pack and motor. The control circuit includes a leak detection sensor. The vehicle further includes a controller to output a leakage resistance associated with the pack. The leakage resistance is based on a voltage of the pack and a leak voltage detected by the sensor while the contactor is closed.
Abstract:
Vehicles that use electric power as a motive force may use accurate measurements of battery power for numerous purposes, e.g., battery characteristics, state of charge of the battery, travel distance remaining for the vehicle and the like. A traction battery measurement should be taken when the battery is fully relaxed, i.e., the battery is neither being charged nor providing power and a time period thereafter when the battery chemistry reaches a steady state. A controller or methods may determine if the battery is relaxed and if the battery is not relaxed, delay charging or discharging of the traction battery to allow accurate battery capacity determination. The controller may control a battery charger to ensure the battery is fully relaxed before sensing battery characteristics.