Abstract:
A vehicle having a traction battery with at least one cell includes a controller coupled to the traction battery and programmed to modify traction battery current in response to a difference between a lithium plating parameter target value and a lithium plating parameter actual value to reduce the difference. The lithium plating parameter or indicator may be based on a differential open circuit voltage of a battery cell, or a ratio of differential voltage of the at least one cell as a function of time to cell charging rate of the at least one cell.
Abstract:
Lithium ion battery state of charge (SOC) is a function of open circuit voltage (OCV). Battery internal diffusion process needs to be nearly completed to be able to measure battery open circuit voltage. The length of the minimum settling time depends on the battery type, usage and temperature. Described are methods to determine electric vehicle battery voltage relaxation time based on battery temperature and usage history.
Abstract:
Lithium ion battery state of charge (SOC) is a function of open circuit voltage (OCV). Battery internal diffusion process needs to be nearly completed to be able to measure battery open circuit voltage. The length of the minimum settling time depends on the battery type, usage and temperature. Described are methods to determine electric vehicle battery voltage relaxation time based on battery temperature and usage history.
Abstract:
Lithium ion battery state of charge (SOC) is a function of open circuit voltage (OCV). Battery internal diffusion process needs to be nearly completed to be able to measure battery open circuit voltage. The length of the minimum settling time depends on the battery type, usage and temperature. Described are methods to determine electric vehicle battery voltage relaxation time based on battery temperature and usage history.
Abstract:
Systems and methods for operating a battery pack supplying power to propel a vehicle are disclosed. One example method includes, increasing a battery pack state of charge window in response to a negative grade of a section of road a vehicle is traveling. The method also includes decreasing the battery pack state of charge window in response to the vehicle transitioning from traveling down a section of road having a negative grade to traveling down a section of road that has a positive or zero grade.
Abstract:
A hybrid-electric vehicle includes a traction battery. A controller may operate the traction battery within certain state of charge and voltage limits. The controller may define a minimum operating voltage or state of charge below which no power may be requested from the traction battery. The minimum voltage and state of charge may be based on an electrical resistance of the traction battery. The voltage may also be based on a minimum power level required to crank the engine while meeting emissions standards. As the battery ages, the minimum voltage level may be adjusted such that the minimum power level is available at the minimum voltage level.
Abstract:
A battery management system for a vehicle includes a controller programmed to charge a battery at a predetermined charge rate. The controller discharges the battery for a predetermined time in response to a terminal voltage of the battery exceeding a predetermined voltage limit that results in a reduced charge rate. After discharging for the predetermined time, the controller resumes charging at the predetermined charge rate. A current magnitude during the discharge and the predetermined time may be based on factors including the predetermined charge rate, a battery temperature, and a charge current magnitude during charging.
Abstract:
A method of detecting a leak in a battery pack according to an exemplary aspect of the present disclosure includes, among other things, calculating a predicted amount of thermal energy at a position, measuring an actual amount of thermal energy at the position, and comparing the predicted amount to the actual amount to identify if a battery pack is leaking.
Abstract:
Systems and methods for operating a battery pack supplying power to propel a vehicle are disclosed. One example method comprises, adjusting a battery pack state of charge window in response to vehicle mass. Adjusting the battery pack state of charge window in response to vehicle mass may allow the battery pack to provide an increased amount of energy to a motor so that the motor may provide torque to a driveline for a longer period of time and/or absorb more vehicle generator produced power during vehicle operations.
Abstract:
A method for extending the life cycle of a battery includes receiving a storage mode status signal at a battery controller and incrementally adjusting a state of charge window over a period of time in response to receiving the storage mode status signal.