Abstract:
Provided is a switch apparatus that provides a connection or a disconnect between an input terminal and an output terminal, including a mechanical switch section and a first semiconductor switch section that are connected in series, between the input terminal and the output terminal; a second semiconductor switch section that is connected in parallel with the mechanical switch section and the first semiconductor switch section, between the input terminal and the output terminal; and a switch control section that individually controls respective ON/OFF timings of the first semiconductor switch section and the second semiconductor switch section and an open/close timing of the mechanical switch section.
Abstract:
A power conversion device including an alternating current (AC) source, a plurality of switching units connected in series between positive and negative terminals of the AC source, each including a semiconductor switching element and having a load connected thereto, each switching unit outputting, to the load connected thereto, an input current from the AC source and a direct current (DC) output voltage that is generated through ON/OFF control of the semiconductor switching elements, a capacitor connected in parallel with the AC source and with the switching units, an inductor inserted between the capacitor and the switching units, and between the AC source and the switching units, a current measurement unit that measures a value of a current flowing from the AC source to the capacitor, and a control device that performs the ON/OFF control on the semiconductor switching elements on the basis of the measured current value.
Abstract:
In a power converter, in a period in which the polarities of output voltage and output current of a power converter differ, a pulse train voltage corresponding to a PWM signal is output by a first switching element and a second switching element being turned off, one element of a first switch element and a second switch element being turned on, and the other element being turned on and off based on an inverted signal of a PWM signal pulse width modulated in accordance with an output voltage command.
Abstract:
A power conversion apparatus includes first, second, third, and fourth switching elements. In a first period, the second and third switching elements are switched ON, and first and fourth switching elements are alternately switched ON/OFF. In a second period, the first and fourth switching elements are switched ON, and the second and third switching elements are alternately switched ON/OFF. In a third period, the first and second switching elements are switched ON, and the third and fourth switching elements are switched OFF. The power conversion apparatus provides a release path for inductive energy accumulated in a reactor.
Abstract:
If current path is switched via switching, voltage overshoot exceeding the device breakdown voltage may be generated. A flying capacitor circuit is provided, having a plurality of switching devices cascade-connected on a first surface of a substrate; a plurality of rectifier devices cascade-connected on a second surface of the substrate; and at least one capacitor provided in a wiring connecting main terminals of a switching device and a rectifier device that are associated with each other and included in the plurality of switching devices and the plurality of rectifier devices; and at least part of the wiring runs sandwiching the substrate in parallel.
Abstract:
Provided is an uninterruptible power supply system. The uninterruptible power supply system includes a power supply unit including a power supply circuit converting alternating current power into direct current voltage to be supplied to a load apparatus. The uninterruptible power supply system includes a battery unit including a battery circuit. The battery circuit stores direct current power and discharges the direct current power to generate direct current voltage to be supplied to the load apparatus. The uninterruptible power supply system includes a rack in which each of the power supply unit and the battery unit is mounted.
Abstract:
In a power conversion device, a constant voltage can be supplied even when the voltage of an alternating current power supply fluctuates. A switching element Q1 and switching element Q2 are connected to a direct current power supply series circuit. A connection point of a direct current power supply and direct current power supply is a neutral point terminal, a connection point of the switching element Q1 and switching element Q2 is an output terminal, switch elements S1 and S2 are connected between the output terminal and neutral point terminal, switch elements S3 and S4 are connected between a terminal R of an alternating current power supply having a terminal S connected to the neutral point terminal, and the output terminal, and a first element and second element selected from among the switching elements Q1 and Q2 and switch elements S1 to S4 are turned on and off complementarily.
Abstract:
A power converter that can supply constant voltage to a load even upon fluctuation of voltage of an AC power source includes an inverter circuit resulting from connecting switching elements in series, the inverter circuit being connected to both ends of a DC power source series circuit resulting from connecting in series two DC power sources; an AC output terminal that is connected to a connection point of the switching elements; another AC output terminal that is connected to a connection point of the DC power sources; and a bidirectional switch element including one end connected to the AC output terminal U and another end connected to a terminal of an AC power source.
Abstract:
A power converter can include an inverter including, connected in series, switching elements, the inverter circuit being connected to both ends of a DC power source series circuit resulting from connecting in series a DC power source and a DC power source. Also included can be an AC output terminal that is connected to a connection point of the switching element and the switching element, an AC output terminal that is connected to a connection point of the DC power source and the DC power source, a bidirectional switch element one end of which is connected to the AC output terminal and the other end of which is connected to a terminal of an AC power source and a bidirectional switch element one end of which is connected to the AC output terminal and the other end of which is connected to the AC power source.
Abstract:
There is provided a power conversion apparatus including: a first power supply terminal and a second power supply terminal which are paired with each other; a third power supply terminal and a fourth power supply terminal which are paired with each other; 1st to nth switches sequentially connected between the first power supply terminal and the fourth power supply terminal; 1st to nth rectifier devices sequentially connected between the first power supply terminal and the third power supply terminal; and each of 1st to (n−1)th capacitors which is physically disposed and electrically connected between an Nth terminal between an Nth switch and a (N+1)th switch, and an Nth terminal between an Nth rectifier device and a (N+1)th rectifier device, in which the 1st to nth switches are disposed to be physically aligned with the 1st to nth rectifier devices, respectively.