Abstract:
In the present invention, effective thinned reading is performed when using an imaging device provided with a color filter other than a Bayer array. This imaging device (10) is provided with: an imaging element (14) containing a plurality of photoelectric conversion elements arrayed in a first and second direction; a color filter, wherein a basic array pattern resulting from a first and second filter being disposed in a predetermined pattern of N×M pixels and the first and second filter being disposed in a first and second direction is disposed repeatedly, and the first filter is disposed in a first-third direction in the color filter; a line image data generation means that, from the imaging element (14), reads the pixel signals of a plurality of pixels at a set cycle, and from the read pixel signals, generates line image data comprising pixel signals of pixels arrayed along the second direction and arrayed in an (N+k) line cycle in the first direction among the plurality of pixels; and an image data generation means that generates image data on the basis of the line image data.
Abstract:
An imaging apparatus includes a solid-state imaging device and a driving unit. The solid-state imaging device has a plurality of pairs of first and second photoelectric conversion elements having different spectral sensitivity characteristics. The driving unit independently controls an exposure time of a first group of the plurality of first photoelectric conversion elements and an exposure time of a second group of the plurality of second photoelectric conversion elements. A wavelength range where the first photoelectric conversion element of each pair mainly has a spectral sensitivity and a wavelength range where the second photoelectric conversion element of each pair mainly has spectral sensitivity fall within the respective wavelength ranges of specific colors of visible light. A half width in the spectral sensitivity characteristic of each first photoelectric conversion element is wider than a half width in the spectral sensitivity characteristic of each second photoelectric conversion element of the pair.
Abstract:
There are provided an endoscope control device, an endoscope maintenance support method, and a non-transitory computer readable recording medium storing an endoscope maintenance support program capable of appropriately performing maintenance of an endoscope. An endoscope apparatus includes: a storage control unit that stores transmission data including identification information of an examination performed using an endoscope and state information, which indicates a state of hardware included in the endoscope under the examination, in a ROM; and a transmission control unit that transmits the transmission data to a relay apparatus through a communication interface.
Abstract:
An image pickup device includes: a color filter having basic array patterns with first and second array patterns disposed symmetrically, wherein the first array pattern has a first filter at the 4 corner and center pixels of a 3×3 pixel square array, a second filter in a line at the horizontal direction center of the square array, and a third filter placed in a line at the vertical direction center of the square array, and the second array pattern has the same placement of the first filter as the first array pattern and has placement of the second filter and placement of the third filter swapped to that of the first array pattern; and phase difference detection pixels placed on pixels corresponding to positions of centers of at least 1 pair of patterns out of 2 pairs of the first array pattern and the second array pattern.
Abstract:
In the color imaging element and the imaging device according to an aspect of the present invention, a basic array pattern is repeatedly placed in a first direction and in a second direction, the basic array pattern includes four or more rectangular patterns each corresponding to 3×2 pixels each composed of a first filter, a color filter array includes therein grating filter lines surrounding the four directions of the rectangular pattern, the color filter array includes therein the first filters each disposed in each line in the first direction, in the second direction, in a third direction, and in a fourth direction, and the basic array pattern includes therein one or more second filters of each color, each disposed in each line in the first direction in the second direction.
Abstract:
An image pickup device includes: a color filter having repeatedly disposed basic array patterns configured with first and second array patterns disposed symmetrically about a point, wherein the first array pattern has a first filter placed at the 4 corner and center pixels of a 3×3 pixel square array, a second filter placed in a line at the horizontal direction center of the square array, and a third filter placed in a line at the vertical direction center of the square array, and the second array pattern has the same placement of the first filter as the first array pattern and has placement of the second filter and placement of the third filter swapped over to that of the first array pattern; and phase difference detection pixels placed at positions corresponding to the first filter at a top and bottom edge sides in the array pattern.
Abstract:
Interpolation precision of phase difference detection pixels is raised. An image pickup device includes: a color filter disposed with a repeating basic array pattern configured by 3×3 pixel square arrays of a first array pattern and a second array pattern disposed symmetrically about a point; a first phase difference detection pixel that is placed at a position of a pixel corresponding to 1 corner portion out of the 4 corner portions of at least one array pattern in 1 pair of the first array pattern and the second array pattern out of 2 pairs of the first array pattern and the second array pattern configuring the basic array pattern; and a second phase difference detection pixel that is placed at a position of a pixel corresponding to 1 corner portion out of the 4 corner portions in the array pattern, out of the first array pattern.
Abstract:
According to a color imaging element and an imaging device of the present invention, it is possible to simplify processing in a subsequent stage compared to the case of a random array, improve reproduction precision of de-mosaic processing in a high frequency range, facilitate de-mosaic processing as a result of increase in types of peripheral colors, discern a direction with high correlation between a horizontal direction and a vertical direction, and suppress aliasing upon de-mosaic processing.
Abstract:
An imaging apparatus includes: an image pickup device (14) including plural photoelectric conversion elements arrayed in a first direction and second direction; a color filter that has a repeatedly disposed basic array pattern of (N×M) pixels placed in a predetermined pattern in the first direction and the second direction (wherein N and M are integers of 3 or more); a line image data generation means that reads pixel signals from plural pixels at a set cycle from the image pickup device (14), and, from the read pixel signals, generates line image data configured from pixel signals of pixels, from out of the plural pixels, that are arrayed running along the second direction and are arrayed at a line cycle of (N−k) in the first direction (wherein 0
Abstract:
An image processing method according to an aspect of the present invention includes acquiring a mosaic image composed of pixels of a first color that contributes most to acquisition of a luminance signal among three colors for pixels, and pixels of second colors other than the first color, a first color image corresponding to pixels of the first color and a second color image corresponding to pixels of the second colors having respective different frequency ranges that are reproducible; extracting a region containing a spatial frequency at which the second color image is not reproducible while the first color image is reproducible, in an entire image area corresponding to the mosaic image; and reducing a chroma of an image corresponding to that region in an image acquired by demosaic processing on the mosaic image.