Abstract:
An image processing device includes: an image acquisition unit that acquires first and second image data for projecting the image from the first and second projection units respectively; a superimposed region information acquisition unit that acquires information on a superimposed region between the projection range of the first projection unit and the projection range of the second projection unit; a first image processing unit that performs first image processing on a first portion in the first image data corresponding to the superimposed region; a second image processing unit that performs second image processing on a second portion in the second image data corresponding to the superimposed region; and an output unit that outputs the first image data after the first image processing as image data for the first projection unit and outputs the second image data after the second image processing as image data for the second projection unit.
Abstract:
A projection system includes a set of a first projection apparatus and a first imaging unit and a set of a second projection apparatus and a second imaging unit. A first projection range of the first projection apparatus and a second projection range of the second projection apparatus have an overlapping part. A control device of the projection system determines whether or not an operation for an operating part projected to the overlapping part is performed based on a captured image of the first projection range and a captured image of the second projection range, and executes a predetermined control in a case where it is determined that the operation is performed.
Abstract:
An image processing device for a projection system includes an image generation unit and a brightness acquisition unit, and the image generation unit generates data for projecting the specific image, as a first portion in the first data for display, which corresponds to the first superimposed region, generates a second portion in the first data for display, which corresponds to the first non-superimposed region based on first input image data in the data of the projection target image, which corresponds to the first non-superimposed region, and the second brightness, and generates a third portion in the second data for display, which corresponds to the second superimposed region based on second input image data in the data of the projection target image, which corresponds to the second superimposed region, and the first brightness.
Abstract:
A projection display device includes an imaging element, a light source, a light valve that modulates light from the light source and emits modulated light in a prescribed polarization state, and an imaging optical system. The imaging optical system includes a first optical system that is used in common in projection and imaging, a second optical system that is used only in projection, a third optical system that is used only in imaging, and a separation member that separates an optical path from the second optical system toward the first optical system from an optical path from the first optical system toward the third optical system. The first optical system comprises a quarter wave plate and a polarizer arranged in a state of transmitting the light emitted from the light valve.
Abstract:
An objective optical system for an endoscope consists of a front group, an aperture stop, and a positive rear group in order from an object side. The front group consists of a negative first lens having a smaller absolute value of a curvature radius of a lens surface on an image side than that on an object side, and one or more parallel planar members of which an incidence surface and an emission surface are perpendicular to an optical axis, in order from the object side. The rear group consists of a positive second lens and a cemented lens in which a negative third lens, and a positive fourth lens are joined together in order from the object side and a cemented surface has a concave surface toward the image side. A predetermined conditional expression is satisfied.
Abstract:
It is intended to provide an imaging apparatus that enables proper exposure of phase difference detection pixels and thereby makes it possible to perform phase difference autofocusing with high accuracy. A system control unit 11 selects phase difference detection pixels from phase difference detection pixels 51R and 51L existing in a selected phase difference detection area 52 according to a position of the selected phase difference detection area 52 in a row direction X, and determines exposure conditions based on output signals of the selected phase difference detection pixels. A defocus amount calculation unit 19 calculates a defocus amount using output signals of the phase difference detection pixels 51R and 51L existing in the selected phase difference detection area 52 that are part of a shot image signal produced by shooting that is performed by an imaging device 5 under the exposure conditions determined by the exposure determining unit 11.
Abstract:
It is an imaging element in which pixels which are photoelectric conversion elements are placed at respective square lattice positions, in which, when, in a predetermined region where pixels of the imaging element are placed, a plurality of pairs are arranged in a first line which is any one line among lines and a second line which is parallel to the first line, each pair having pair pixels which are first and second phase difference detection pixels placed adjacent to each other to detect a phase difference among the pixels of the imaging element, the pairs in the first line are placed to be spaced apart from each other by at least two pixels, and the pairs in the second line are placed at positions, which correspond to positions where the pair pixels in the first line are spaced apart from each other.
Abstract:
Interpolation precision of phase difference detection pixels is raised. An image sensor (14) is provided with a color filter (30) upon which a basic sequence pattern, formed by disposing a first sequence pattern and a second sequence pattern in point symmetry, is repeatedly disposed. In the first sequence pattern, first filters are disposed on pixels in the four corners and in the center of a square array of 3×3 pixels, second filters are disposed in a horizontal line in the center of a square array, and third filters are disposed in a vertical line in the center of a square array. In the second sequence pattern, the first sequence pattern and the positions of the first filters are the same, while the positions of the second filters and the positions of the third filters have been swapped.
Abstract:
An image capturing element is provided with: a color filter in which a basic arrangement pattern having first and second arrangement patterns arranged to be symmetrical about a point is repeated. The first arrangement pattern comprises first filters arranged on pixels in 2×2 arrangement located at the upper-left portion and a pixel located at the lower-right in a 3×3 pixel square arrangement, second filters arranged on the center and lower end lines in the vertical direction of the square arrangement, and third filters arranged on the center and right lines in the horizontal direction of the square arrangement. The second arrangement pattern comprises the first filters having the same arrangement as in the first arrangement pattern, and the second filters and the third filters having the arrangements interchanged with each other compared to the arrangements in the first arrangement pattern.
Abstract:
A control device of a projection apparatus that projects an image optically modulated by a light modulation element, includes: a processor, and the processor is configured to perform a control of correcting color shading of a projection image that is projected, based on combined use of output adjustment of a light source used in the projection by the projection apparatus and adjustment of image data input into the light modulation element.