Abstract:
Provided are a non-aqueous electrolytic solution secondary battery including, in the following order, a positive electrode slurry layer, a separator, and a negative electrode slurry layer, in which the positive electrode slurry layer consists of a slurry obtained by dispersing a positive electrode active material in a non-aqueous electrolytic solution containing a solvent having a relative permittivity of 5.0 or more and a viscosity of less than 2.0 mPa·s, and the negative electrode slurry layer consists of a slurry obtained by dispersing a negative electrode active material in a non-aqueous electrolytic solution containing a solvent having a relative permittivity of 5.0 or more and a viscosity of less than 2.0 mPa·s; a manufacturing method of the non-aqueous electrolytic solution secondary battery; and a slurry suitable for forming the electrode slurry layer of the non-aqueous electrolytic solution secondary battery.
Abstract:
The present invention provides a nonaqueous electrolyte solution, which can improve flame retardancy and ameliorate performances of a battery without deteriorating the basic battery performance as far as possible, and a secondary battery. The nonaqueous electrolyte solution is a nonaqueous electrolyte solution for a secondary battery that contains metal salts including ions of metals belonging to group 1 or 2 of the periodic table and a specific cyclic compound having phosphorus and nitrogen atoms in a non-protonic solvent. The non-protonic solvent is a solvent that contains at least one kind of carboxylic acid ester compound and carbonic acid ester compound, and a ratio (MPN/Ms) between a mass (Ms) of the non-protonic solvent containing the metal salts and a mass (MPN) of the cyclic compound is 0.01 to 1.
Abstract:
Provided is an all-solid state secondary battery comprising a laminate in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are laminated in this order, in which respective areas of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer satisfy [the area of the positive electrode layer]
Abstract:
A nonaqueous electrolyte solution including a nonaqueous solvent; an electrolyte; and a combustion inhibitor, in which the combustion inhibitor contains a phosphazene compound, and specific conditions are defined by boiling points of a combustion inhibitor, a boiling point of a solvent, and the like.
Abstract:
A non-aqueous electrolytic solution secondary battery includes: a positive electrode; a negative electrode; a separator that separates the positive electrode and the negative electrode from each other; and an electrolytic solution that is introduced into the non-aqueous electrolytic solution secondary battery so as to come into contact with the positive electrode and the negative electrode with the separator interposed therebetween, wherein the electrolytic solution contains an electrolyte and a phosphazene compound in an aprotic solvent, and the separator is a complex that is composed of a substrate containing a non-heat-resistant resin and a heat-resistant material coating the substrate.
Abstract:
Provided are a negative electrode composition including a sulfide-based inorganic solid electrolyte, a negative electrode active material containing a silicon atom or a tin atom, and a polymer, in which the polymer has substantially no adsorption capacity to the negative electrode active material and the sulfide-based inorganic solid electrolyte, a modulus of elasticity of the polymer measured in accordance with JIS K 7161 (2014) is 100 MPa or higher and 1000 MPa or lower, and in a case where a negative electrode active material layer is formed of the negative electrode composition, the polymer is contained in the negative electrode active material layer in a particle form, a negative electrode sheet for an all-solid state secondary battery, an all-solid state secondary battery, a method for manufacturing a negative electrode sheet for an all-solid state secondary battery, and a method for manufacturing an all-solid state secondary battery.
Abstract:
Provided are a solid electrolyte composition including a sulfide-based inorganic solid electrolyte, a salt of a metal belonging to Group I or II of the periodic table, and a multibranched polymer, in which the multibranched polymer has a core portion and at least three arm portions that bond to the core portion, and the arm portion dissolves a metal ion of the salt of the metal belonging to Group I or II of the periodic table, a sheet for an all-solid state secondary battery, an all-solid state secondary battery, and methods for manufacturing a sheet for an all-solid state secondary battery and an all-solid state secondary battery.
Abstract:
Provided are a solid electrolyte composition containing an inorganic solid electrolyte having a conductivity for ions of metals belonging to Group I or II of the periodic table and a compound having an anionic polymerizable functional group, a solid electrolyte-containing sheet containing an inorganic solid electrolyte having a conductivity for ions of metals belonging to Group I or II of the periodic table and an anionic polymer which bonds to the inorganic solid electrolyte, and an all-solid state secondary battery, and methods for manufacturing the solid electrolyte composition, the solid electrolyte-containing sheet, and the all-solid state secondary battery.
Abstract:
A solid electrolyte-containing sheet includes a laminate of three or more solid electrolyte layers, in which the solid electrolyte layer includes an inorganic solid electrolyte and a binder, the inorganic solid electrolytes included in two solid electrolyte layers that are disposed on both surface sides of the laminate among the solid electrolyte layers are formed of particles having an average particle size of 0.3 to 0.9 the inorganic solid electrolyte included in at least one of solid electrolyte layers that are disposed between the two solid electrolyte layers disposed on both the surface sides of the laminate is formed of particles having an average particle size of 1 to 5 μm, and the binder included in the at least one solid electrolyte layer is particulate.
Abstract:
Provided are an electrode layer material including a sulfide-based inorganic solid electrolyte (A) having conductivity of an ion of a metal belonging to Group I or II of a periodic table, an organic compound (B), and an active material (C), in which Expression (1) is satisfied, an electrode sheet for an all-solid state secondary battery, and an all-solid state secondary battery. 0.1≤Ec/Ic≤1,000 Expression (1) In the expression, Ec represents an electron conductivity of the electrode layer material, and Ic represents an ion conductivity of the electrode layer material.