Abstract:
An imaging lens, consisting of a first lens group, a top, and a second lens group having a positive refractive power, in order from the object side, in which the first lens group is composed of a first front lens group having a negative refractive power and a first rear lens group having a positive refractive power in order from the object side, the first rear lens group is composed of a cemented lens formed of a negative lens and a positive lens, the first front lens group at least includes four negative lenses, and at least two of the negative lenses included in the first front lens group satisfy a conditional expression given below: 70
Abstract:
An azo pigment or a tautomer thereof represented by the following Formula (1), and having characteristic X-ray diffraction peaks at Bragg angles (2θ±0.2°) of 6.5°, 7.1° and 21.8° in the CuKα characteristic X-ray diffraction.
Abstract:
An imaging lens consists of a first lens group, a second lens group, an aperture stop and a third lens group that has positive refractive power in this order from an object side. The first lens group consists of an L11 lens having positive refractive power, an L12 lens having negative refractive power, an L13 meniscus lens having negative refractive power with its concave surface facing an image side, an L14 lens having negative refractive power with its concave surface facing the object side and two or three lenses, each having positive refractive power, in this order from the object side. The second lens group consists of an L2p lens having positive refractive power and an L2n lens having negative refractive power.
Abstract:
An organic photoelectric conversion element composition including a p-type-and-n-type linked organic semiconductor polymer represented by any one of formulas (1) to (5), a thin film and a photovoltaic cell each containing the same, an organic semiconductor polymer and a compound each for use in these, and a method of producing the polymer: wherein, in formulas, A to A4 represent a group of a p-type organic semiconductor unit, and B to B3 represent a group of an n-type organic semiconductor unit; L1 to L4 represent a divalent or trivalent linking group; herein, in the formulas, at least one bonding hand represented by -* in the structures shown upperward and downward, and in the case of formula (4), L4 and (b), and L1 or L2 and (a), bond directly or through a divalent linking group; l, n, r, t, u and v represent an integer of 1 to 1,000; m and s represent an integer of 1 to 10; and p, q, l′ and n′ represent an integer of 0 to 1,000; in which p and q do not simultaneously represent 0.
Abstract:
A first lens group including two aspherical lenses, a second lens group consisting of three negative meniscus lenses, each negative meniscus lens having a convex surface facing the enlargement side, a third lens group having a negative refractive power and including at least one cemented lens, and a fourth lens group having a positive refractive power and including at least two cemented lenses and one aspherical lens are arranged in this order from the enlargement side. Predetermined conditional expressions are satisfied.
Abstract:
A wide angle lens includes: a positive first lens group, a second lens group, constituted by two or fewer lenses, that moves during focusing operations, and a third lens group that includes at least one positive lens, provided in this order from the object side. The first lens group includes at least a positive meniscus lens with a convex surface toward the object side, a negative meniscus lens with a convex surface toward the object side, a lens having a concave surface with a radius of curvature having a smaller absolute value toward the image side, a negative lens, a cemented lens formed by a positive lens and a negative lens, and an aperture stop provided adjacent to the cemented lens toward the image side thereof, provided in this order from the object side. The wide angle lens satisfies a predetermined conditional formula.
Abstract:
There is provided a pigment dispersion including an azo pigment or a tautomer thereof represented by the following Formula (1) and having characteristic X-ray diffraction peaks at Bragg angles (2θ±0.2°) of 4.8°, 7.2° and 9.7° in a CuKα characteristic X-ray diffraction.
Abstract:
There is provided a compound represented by the following formula (1): wherein each of R1a to R1k independently represents a hydrogen atom or a monovalent substituent, the substituents may combine with each other to form a ring, each of M1a and M1b independently represents a hydrogen atom or a monovalent counter cation, Y1 represents a nitrogen atom or a carbon atom having a hydrogen atom or monovalent substituent, A1 represents an aromatic group, and the aromatic group represented by A1 may contain a heteroatom or may have a substituent.