Abstract:
A distance between a radiation source standard point indicating a position of a radiation source and a photographic subject on a standard line passing through the radiation source standard point and a detector standard point indicating a position of a detector is measured, a distance between a first reference point positioned in a first direction which is directed towards the detector standard point from the radiation source standard point with respect to the detector standard point and the detector standard point is measured, a distance between a second reference point positioned in a direction opposite to the first direction with respect to the radiation source and the radiation source standard point is measured, and a subject thickness of the photographic subject is calculated by using the distances and a distance from the distance from the first reference point to the second reference point.
Abstract:
An X-ray exposure control device comprises: an X-ray detection element including a plurality of pixels for dose detection each detecting a dose during X-ray radiation; a region setting unit configured to set a use pixel region including pixels for use in dose detection from the plurality of pixels for dose detection during the X-ray radiation; a signal generating unit configured to generate a stop signal for stopping the X-ray radiation from an X-ray source according to the dose detected by each of the pixels for use in the dose detection within the use pixel region set by the region setting unit; and a transmission unit configured to transmit to the X-ray source the stop signal to stop the X-ray radiation as generated by the signal generating unit.
Abstract:
Radiographic images for different imaging directions taken by applying radiation to a subject from the different imaging directions are obtained, and a plurality of tomographic images of the subject are generated based on the obtained plurality of radiographic images. Then, compression processing in the direction perpendicular to slice planes of the generated tomographic images is applied to the tomographic images to generate compressed tomographic images, wherein a range of the imaging directions is obtained, and a compression rate of the compression processing is set based on the obtained range of the imaging directions.
Abstract:
Radiographic images for different imaging directions taken by applying radiation to a subject from the different imaging directions are obtained, and a plurality of first tomographic images having a first slice thickness are generated based on the obtained plurality of radiographic images and a plurality of second tomographic images having a second slice thickness that is greater than the first slice thickness are generated based on the radiographic images. Then, MinIP processing is applied to the first tomographic images to generate a MinIP image, and MIP processing is applied to the second tomographic images to generate a MIP image. Then, combining processing is performed using the MinIP image and the MIP image to generate a composite image.