Abstract:
Disclosed herein is a spin valve magnetoresistive sensor including a first conductor layer, a free ferromagnetic layer provided on the first conductor layer, a nonmagnetic intermediate layer provided on the free ferromagnetic layer, a pinned ferromagnetic layer provided on the nonmagnetic intermediate layer, an antiferromagnetic layer provided on the pinned ferromagnetic layer, and a second conductor layer provided on the antiferromagnetic layer. At least one of the free ferromagnetic layer and the pinned ferromagnetic layer has a thickness larger than that providing a maximum resistance change rate or resistance change amount in the case of passing a current in an in-plane direction of the at least one layer. That is, the thickness of at least one of the free ferromagnetic layer and the pinned ferromagnetic layer falls in the range of 3 nm to 12 nm.
Abstract:
The upper portion of a magnetoresistive film is interposed between insulators in the lateral direction of a recording track in a current-perpendicular-to-the-plane structure magnetoresistive element. Domain control magnetic layers sandwich the upper portion of the magnetoresistive film along with the insulators in the lateral direction. The insulators serve to establish a narrower path for electric current between the lower portion of the magnetoresistive film and an upper electrode layer. The substantial width in the lateral direction can thus be reduced in the magnetoresistive film. In addition, a longitudinal biasing magnetic field established between the domain control magnetic layers efficiently acts on the magnetoresistive film. In particular, if a free magnetic layer is included in the upper portion of the magnetoresistive film, the free magnetic layer can be subjected to a larger longitudinal biasing magnetic field. A single domain property can be realized in the free ferromagnetic layer enough. The Barkhausen noise can be reduced.
Abstract:
A current-perpendicular-to-the-plane (CPP) structure electromagnetic transducer element comprises upper and lower electrically-conductive lead layers. The lead layers are employed to supply an electric current to an electromagnetic transducer film. An electrically-conductive terminal piece is allowed to stand on the surface of the lower electrically-conductive lead layer. The contact established between the electrically-conductive terminal piece and the electromagnetic transducer film is allowed to define the path for the electric current. The reduced contact area of the electrically-conductive terminal piece contributes to reduction in the size or extent of the path for the electric current through the electromagnetic transducer film. The path of the electric current can be reduced in the CPP structure electromagnetic transducer element without relying on reduction in the size of the electromagnetic transducer film.