Abstract:
A particulate mixture etc., which can be used as a precursor of lithium transition metal silicate-type compound of small particle size and low crystallinity, is provided. Further, a cathode active material that can undergo charge-and-discharge reaction in room temperature, and comprises lithium transition metal silicate-type compound, is provided.It is a mixture of silicon oxide particulates, transition metal oxide particulates, and lithium transition metal silicate particulates, and its powder X-ray diffraction measurement shows diffraction peaks near 2θ=33.1° and near 2θ=35.7°, and said silicon oxide particulates and said transition metal oxide particulates are amorphous, and said lithium transition metal silicate particulates are in a microcrystalline or amorphous state. Furthermore, a cathode active material obtained by grinding the active material aggregate obtained by heat-treating this particulate mixture is provided.
Abstract:
A method for producing an aggregated thread structure includes (a) a process of dispersing carbon nanotube to a first solvent, which is water or a mixed solvent containing organic solvent and water, with a surfactant, to create a dispersion and (b) a process of injecting the dispersion, in which carbon nanotube is dispersed, to a condensing liquid, which is a second solvent that differs from the first solvent, to thereby aggregate and spin carbon nanotube. The aggregated thread structure containing carbon nanotube has: a bulk density of 0.5 g/cm3 or more; a weight reduction rate up to 450° C. of 50% or less; a G/D ratio for resonance Raman scattering measurement of 10 or more; and an electric conductivity of 50 S/cm or more.
Abstract:
A nanosized particle has a first phase that is a simple substance or a solid solution of element A, which is Si, Sn, Al, Pb, Sb, Bi, Ge, In or Zn, and a second phase that is a compound of element D, which is Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, Y, Zr, Nb, Mo, Ru, Rh, Ba, lanthanoid elements (not including Ce and Pm), Hf, Ta, W or Ir, and element A, or a compound of element A and element M, which is Cu, Ag, or Au. The first phase and second phase are bound via an interface, and are exposed to the outer surface. The surface of the first phase other than the interface is approximately spherical. Furthermore, a lithium ion secondary battery includes the nanosized particle as an anode active material.
Abstract:
A method for producing an aggregated thread structure includes (a) a process of dispersing carbon nanotube to a first solvent, which is water or a mixed solvent containing organic solvent and water, with a surfactant, to create a dispersion and (b) a process of injecting the dispersion, in which carbon nanotube is dispersed, to a condensing liquid, which is a second solvent that differs from the first solvent, to thereby aggregate and spin carbon nanotube. The aggregated thread structure containing carbon nanotube has: a bulk density of 0.5 g/cm3 or more; a weight reduction rate up to 450° C. of 50% or less; a G/D ratio for resonance Raman scattering measurement of 10 or more; and an electric conductivity of 50 S/cm or more.