Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
A method for dynamically determining power and scheduling assignments in a communications network includes selecting, by a controller, a mobile station in each cell to define a mobile station set, determining, by the controller, a power allocation for each of the mobile stations in the mobile station set, calculating, by the controller, a global utility function by evaluating a contribution from each of the mobile stations in the mobile station set in accordance with the power allocation, repeating, by the controller, the selecting, the determining, and the calculating steps a predetermined number of times to generate additional ones of the global utility function, and choosing, by the controller, the mobile station set corresponding to the global utility function having a particular value for a resource block of a frame. The method may also include repeatedly dividing a user set into clusters to obtain a best power allocation.
Abstract:
A method for pilot sequence design in a communications system includes selecting an initial cell in the communications system, and grouping other cells in the communications system relative to the initial cell into one of a neighbor group and a non-neighbor group in accordance with a neighborness measure of each of the other cells to the initial cell. The method also includes designing pilot sequences that are substantially orthogonal to one another for the initial cell and the other cells in the neighbor group, and providing information about the pilot sequences to the initial cell and the other cells in the communications system.
Abstract:
A method for dynamically determining power and scheduling assignments in a communications network includes selecting, by a controller, a mobile station in each cell to define a mobile station set, determining, by the controller, a power allocation for each of the mobile stations in the mobile station set, calculating, by the controller, a global utility function by evaluating a contribution from each of the mobile stations in the mobile station set in accordance with the power allocation, repeating, by the controller, the selecting, the determining, and the calculating steps a predetermined number of times to generate additional ones of the global utility function, and choosing, by the controller, the mobile station set corresponding to the global utility function having a particular value for a resource block of a frame. The method may also include repeatedly dividing a user set into clusters to obtain a best power allocation.
Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
A method for estimating communications channels includes determining, by a first device, channel significance information from a transmitting device, the channel significance information including information about communications channels carrying signals that are potentially significant interferers to the first device operating within range of the transmitting device, and estimating, by the first device, channel parameters of the communications channels identified as potentially significant interferers in accordance with the channel significance information. The method also includes transmitting, by the first device, the estimated channel parameters to one of the transmitting device and a controlling device.
Abstract:
A method for pilot sequence design in a communications system includes selecting an initial cell in the communications system, and grouping other cells in the communications system relative to the initial cell into one of a neighbor group and a non-neighbor group in accordance with a neighborness measure of each of the other cells to the initial cell. The method also includes designing pilot sequences that are substantially orthogonal to one another for the initial cell and the other cells in the neighbor group, and providing information about the pilot sequences to the initial cell and the other cells in the communications system.
Abstract:
A method for operating a first device-to-device (D2D) device in a cellular communications system includes receiving geo-location information from a first entity in the cellular communications system, the geo-location information including location information for cellular users of the cellular communications system and resources of the cellular communications system available to the cellular users, selecting one of the resources to avoid causing interference to a cellular transmission, the resource being selected in accordance with the geo-location information, and transmitting to a second D2D device over the selected resource.