摘要:
A system for processing video imaging information, corresponding electronic device, and method of processing video imaging information, are disclosed. In at least one embodiment, the electronic device includes a coder capable of compressing the imaging information for transmission via a communications channel, the video imaging information pertaining to a plurality of video source frames including a current source frame. The coder includes means for performing a super-resolution operation in relation to previous frame information representative of at least one of the video source frames occurring prior to the current source frame, the super-resolution operation being performed prior to at least some of the video imaging information corresponding to the current source frame being coded or decoded.
摘要:
A method of coding video content. The method can include, identifying a first plurality of image blocks within a picture based on at least a first image characteristic that is common to each of the first plurality of image blocks. A first image block group can be dynamically defined. At least one of the image blocks can be selected as a predictor block to predict other image blocks within the first image block group. In another arrangement, at least a first image block and a second image block can be identified within a picture. The second image block can be predicted from the first image block. A displacement vector can be defined to associate the second image block with the first image block. A value representing the displacement vector can be included within a header of the second image block.
摘要:
A method of coding video content. The method can include, identifying a first plurality of image blocks within a picture based on at least a first image characteristic that is common to each of the first plurality of image blocks. A first image block group can be dynamically defined. At least one of the image blocks can be selected as a predictor block to predict other image blocks within the first image block group. In another arrangement, at least a first image block and a second image block can be identified within a picture. The second image block can be predicted from the first image block. A displacement vector can be defined to associate the second image block with the first image block. A value representing the displacement vector can be included within a header of the second image block.
摘要:
A method and apparatus for encoding and decoding video performs transformation of at least a portion of a high-resolution video frame into a low resolution image and a plurality of enhancement data sets, encodes the low resolution image as a primary coded picture in a bitstream format and encodes each of the plurality of enhancement data sets as a different redundant coded picture in the bitstream format. For decoding, a decoded low resolution image and a plurality of decoded enhancement data sets are generated and an inverse transform is performed to construct a decoded high-resolution image. The primary coded picture and a redundant coded picture may be formatted according to the ITU-T H.264 Advanced Coding specification. The transform may be a polyphase or a sub-band transform.
摘要:
A device for use with a frame generating portion that is arranged to receive picture data corresponding to a plurality of pictures and to generate encoded video data for transmission across a transmission channel having an available bandwidth. The frame generating portion can generate a frame for each of the plurality of pictures to create a plurality of frames. The encoded video data is based on the received picture data. The device includes a distortion estimating portion and inclusion determining portion and an extracting portion. The distortion estimating portion can estimate a distortion. The inclusion determining portion can establish an inclusion boundary based on the estimated distortion. The extracting portion can extract a frame from the plurality of frames based on the inclusion boundary.
摘要:
A scalable video compression system (100) having an encoder (120), bit extractor (140), and decoder (160) for efficiently encoding and decoding a scalable embedded bitstream (130) at different video resolution, framerate, and video quality levels is provided. Bits can be extracted in order of refinement layer (136), followed by temporal level (132), followed by spatial layer (134), wherein each bit extracted provides an incremental improvement in video decoding quality. Bit extraction can be truncated at a position in the embedded bitstream corresponding to a maximum refinement layer, a maximum temporal level, and a maximum spatial layer. For a given refinement layer, bits are extracted from all spatial layers in a lower temporal level prior to extracting bits from spatial layers in a higher temporal level for prioritizing coding gain to increase video decoding quality, and prior to moving to a next refinement layer.
摘要:
Disclosed is an image encoder that divides a digital image into a set of “macroblocks.” Each macroblock is encoded by applying spatial (and possibly temporal) prediction. The “residual” of the macroblock is calculated as the difference between the predicted content of the macroblock and the actual content of the macroblock. The residual is then “decimated” by taking an orderly subset of its values. The decimated residual is then either transmitted to an image decoder or is stored for later use. To recreate the original image, the macroblocks are first recreated from their received residuals. When a decimated residual is received, the values of the residual left out during decimation are interpolated from the values actually received. Using the prediction techniques along with the residual, the original content of the macroblock is recovered. The macroblocks are then joined to form the original digital image.
摘要:
A fast video encoder (100) and method (500) for selecting (809) Inter macro-block mode or intra macro-block mode is provided. The method can include estimating (502) a rate-distortion cost (801) of a plurality of predictors (203) for coding a video (201), selecting (504) a predictive coding mode for the video based on a minimization of the rate-distortion cost, and coding (505) the image using a predictive mode associated with the minimum rate-distortion cost. The rate-distortion cost can be estimated across Intra macro-block modes and Inter macro-block modes for reducing a computational complexity. Rate-Distortion costs can be terminated early (524) based on statistical information (522) across a plurality of predictors for increasing an encoding speed. A fast estimation of the rate-distortion cost associated with the Intra macro-block mode for making inter/intra macro-block mode decision in a video coding system by exploiting the coding statistics across prediction modes is presented.
摘要:
Disclosed is an image encoder that divides a digital image into a set of “macroblocks.” If appropriate, a macroblock is “downsampled” to a lower resolution. The lower-resolution macroblock is then encoded by applying spatial (and possibly temporal) prediction. The “residual” of the macroblock is calculated as the difference between the predicted and actual contents of the macroblock. The low-resolution residual is then either transmitted to an image decoder or stored for later use. In some embodiments, the encoder calculates the rate-distortion costs of encoding the original-resolution macroblock and the lower-resolution macroblock and then only encodes the lower-resolution macroblock if its cost is lower. When a decoder receives a lower-resolution residual, it recovers the lower-resolution macroblock using standard prediction techniques. Then, the macroblock is “upsampled” to its original resolution by interpolating the values left out by the encoder. The macroblocks are then joined to form the original digital image.
摘要:
A method and apparatus for encoding and decoding video performs transformation of at least a portion of a high-resolution video frame into a low resolution image and a plurality of enhancement data sets, encodes the low resolution image as a primary coded picture in a bitstream format and encodes each of the plurality of enhancement data sets as a different redundant coded picture in the bitstream format. For decoding, a decoded low resolution image and a plurality of decoded enhancement data sets are generated and an inverse transform is performed to construct a decoded high-resolution mage. The primary coded picture and a redundant coded picture may be formatted according to the ITU-T H.264 Advanced Coding specification. The transform may be a polyphase or a sub-band transform.