摘要:
A spatial transformation methodology provides a new image interpolation scheme, or analyzes an already existing one. Examples of spatial operations include but are not limited to, demosaicing, edge enhancement or sharpening, linear filtering, and non-linear filtering. A demosaicing operation is described herein, although the scheme is applied generally to spatial transformation operations. The spatial transformation methodology includes detailed expressions for the noise covariance after a spatial operation is performed for each of the three color channels, red, green, and blue. A color filter array is in the form of a Bayer pattern and demosaicing is performed using a 4-neighbor bilinear interpolation. Using lattice theory, the spatial transformation methodology predicts noise covariance after demosaicing in terms of the input noise covariance and an autocorrelation function of the image is determined for a given selectable number of shifts.
摘要:
A method and system are provided for approximating spectral sensitivities of a particular image sensor, the image sensor having a color filter array positioned over the image sensor. In one example of the method, the method involves measuring spectral sensitivities of a set of image sensors each having a color filter array positioned over the image sensor, calculating mean spectral sensitivities of the set of image sensors for each color within the color filter array, measuring outputs of a particular image sensor when capturing a picture of a plurality of color patches under a first illuminant and calculating spectral sensitivities of the particular image sensor using the mean spectral sensitivities and the output of the particular image sensor. In some embodiments, the method further comprises utilizing the calculated spectral sensitivities to determine outputs of the particular image sensor under a second illuminant. In some embodiments, the method further comprises utilizing the calculated spectral sensitivities to calibrate a camera including the image sensor.
摘要:
A system and method for denoising using signal dependent adaptive weights includes an imaging device that captures image data corresponding to a photographic target. A denoising manager identifies similar pixels from said image data that are located within a pre-defined processing window around the pixel to be denoised. The denoising manager computes signal-dependent weighting values that correspond to respective ones of the similar pixels. The denoising manager then calculates the denoised pixel value by utilizing the weighting values in conjunction with raw pixel values of the similar pixel set. In this manner all pixels in the image are denoised.
摘要:
Systems, methods, and computer readable media for removing noise from the luminance (luma) channel in a digital image represented in the YUV color space are described. In general, an element from the luma channel may be selected and a region about that element defined. Using a threshold that is based on the selected luma element's value, similar luma values within the defined region may be identified and combined to provide a substitute value. The substitute value may be blended with the value of the selected element within the image's luma channel. In another implementation, element values from both an image's luma and chroma channels may be used to identify similar luma values.
摘要:
Image enhancement by separating the image signals, either Y or RGB, into a series of bands and performing noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. This results in improved sharpness and masking of image processing pipeline artifacts. Chroma signals are not separated into bands but have noise reduction applied to the full bandwidth signals. The higher frequency band is attenuated or amplified based on light level. The noise reduction has thresholds based on measured parameters, such as signal frequency, gain and light level, provided in a lookup table. The window size used for the noise reduction varies with the light level as well, smaller windows sizes being used in bright light and increasing window sizes as light levels decrease. Panoramic images are handled in a similar fashion.
摘要:
A system and method for denoising using signal dependent adaptive weights includes an imaging device that captures image data corresponding to a photographic target. A denoising manager identifies similar pixels from said image data that are located within a pre-defined processing window around the pixel to be denoised. The denoising manager computes signal-dependent weighting values that correspond to respective ones of the similar pixels. The denoising manager then calculates the denoised pixel value by utilizing the weighting values in conjunction with raw pixel values of the similar pixel set. In this manner all pixels in the image are denoised.
摘要:
The color calibration using colored rays method achieves illuminant independence in calibrating digital still cameras. A constraint is developed using matrix-vector operations and properties of the Kronecker product. The constraint ensures similar calibration performance between colored rays set and the Macbeth ColorChecker. An optimization scheme using orthogonal non-negative matrix factorization with the new constraint is able to obtain the optimal colored rays set. Then, by acquiring an image of the optimal colored rays set, a camera is able to determine an adjustment matrix for color calibration. Experimental results show that compared to traditional calibration approach for digital still cameras, the colored rays approach gives smaller color error under various evaluation illuminants with only one shot needed.
摘要:
A fast accurate multi-channel frequency dependent scheme for analyzing noise in a signal processing system is described herein. Noise is decomposed within each channel into frequency bands and sub-band noise is propagated. To avoid the computational complexity of a convolution, traditional methods either assume the noise to be white, at any point in the signal processing pipeline, or they just ignore spatial operations. By assuming the noise to be white within each frequency band, it is possible to propagate any type of noise (white, colored, Gaussian, non-Gaussian and others) across a spatial transformation in a very fast and accurate manner. To demonstrate the efficacy of this technique, noise propagation is considered across various spatial operations in an image processing pipeline. Furthermore, the computational complexity is a very small fraction of the computational cost of propagating an image through a signal processing system.
摘要:
A system and method for effectively performing an image data transformation procedure may include an electronic camera device that is implemented to capture primary image data corresponding to a photographic target. A transformation manager in the electronic camera device may be configured to convert the primary image data into secondary image data by utilizing selectable transformation parameters that are optimized by utilizing an optimization metric to thereby minimize noise characteristics in the secondary image data. The transformation parameters may be stored in parameter lookup tables in the electronic camera device for use by the transformation manager in performing the image data transformation procedure.
摘要:
An image denoising system and method of implementing the image denoising system is described herein. Noise is decomposed within each channel into frequency bands, and sub-band noise is propagated. Denoising is then able to occur at any node in a camera pipeline after accurately predicting noise that is signal level-dependent, frequency dependent and has inter-channel correlation. A methodology is included for estimating image noise in each color channel at a sensor output based on average image level and camera noise parameters. A scheme is implemented for detecting a peak-white image level for each color channel and predicting image level values for representative colors. Based on a noise model and camera parameters, noise levels are predicted for each color channel for each color patch and these noise levels are propagated to the denoising node. A three dimentional LUT correlates signal level to noise level. Then, a denoising threshold is adaptively controlled.