摘要:
A workpiece handling system with dual load locks, a transport chamber and a process chamber. Workpieces may be retrieved from one load lock for processing at vacuum pressure, while workpieces are unloaded from the other load lock at the pressure of the surrounding envirornment. The transport chamber has a transport robot with two arms. Processed workpieces and new workpieces may be exchanged by a simple under/over motion of the two robot arms. The transport robot rotates about a central shaft to align with the load locks or the process chamber. The robot may also be raised or lowered to align the arms with the desired location to which workpieces are deposited or from which workpieces are retrieved. The two load locks may be positioned one above the other such that a simple vertical motion of the robot can be used to select between the two load locks. The two load locks and transport robot allow almost continuous processing. Additional process chambers may be added to the transport chamber to further increase throughput. Each stage of the workpiece handling system may also be designed to handle multiple workpieces, such as two side by side workpieces. Throughput is increased while allowing shared machinery to be used. Linear and rotational doors may be used for the load locks to provide a simple, compact design.
摘要:
A workpiece handling system with dual load locks, a transport chamber and a process chamber. Workpieces may be retrieved from one load lock for processing at vacuum pressure, while workpieces are unloaded from the other load lock at the pressure of the surrounding environment. The transport chamber has a transport robot with two arms. Processed workpieces and new workpieces may be exchanged by a simple under/over motion of the two robot arms. The transport robot rotates about a central shaft to align with the load locks or the process chamber. The robot may also be raised or lowered to align the arms with the desired location to which workpieces are deposited or from which workpieces are retrieved. The two load locks may be positioned one above the other such that a simple vertical motion of the robot can be used to select between the two load locks. The two load locks and transport robot allow almost continuous processing. Additional process chambers may be added to the transport chamber to further increase throughput. Each stage of the workpiece handling system may also be designed to handle multiple workpieces, such as two side by side workpieces. Throughput is increased while allowing shared machinery to be used. Linear and rotational doors may be used for the load locks to provide a simple, compact design.
摘要:
A workpiece handling system with dual load locks, a transport chamber and a process chamber. Workpieces may be retrieved from one load lock for processing at vacuum pressure, while workpieces are unloaded from the other load lock at the pressure of the surrounding environment. The transport chamber has a transport robot with two arms. Processed workpieces and new workpieces may be exchanged by a simple under/over motion of the two robot arms. The transport robot rotates about a central shaft to align with the load locks or the process chamber. The robot may also be raised or lowered to align the arms with the desired location to which workpieces are deposited or from which workpieces are retrieved. The two load locks may be positioned one above the other such that a simple vertical motion of the robot can be used to select between the two load locks. The two load locks and transport robot allow almost continuous processing. Additional process chambers may be added to the transport chamber to further increase throughput. Each stage of the workpiece handling system may also be designed to handle multiple workpieces, such as two side by side workpieces. Throughput is increased while allowing shared machinery to be used. Linear and rotational doors may be used for the load locks to provide a simple, compact design.
摘要:
An integrated high speed robotic mechanism is disclosed for improving transport equipment, integrating an object movement with other functionalities such as alignment or identification. The disclosed integrated robot assembly typically comprises an end effector for moving the object in and out of a chamber, a rotation chuck incorporated on the robot body to provide centering and theta alignment capability, and an optional identification subsystem for identifying the object during transport. The present invention also discloses a transfer robot system, employing a plurality of integrated robot assemblies; a transfer system where a transfer robot system can service a plurality of connected chambers such as FOUP or FOSB; a front end module (FEM); or a sorter system. Through the use of these incorporated capabilities into the moving robot, single object transfer operations can exceed 500 parts per hour.
摘要:
An integrated robotic mechanism is disclosed for improving transport equipment, integrating an object movement with other functionalities such as alignment or identification. The disclosed integrated robot assembly can comprise a multiple end effector for moving a plurality of workpieces, a single end effector for moving a single workpiece, a rotation chuck incorporated on the robot body to provide alignment capability, and an optional identification subsystem for identify the object during transport. The present invention robot assembly can be used in a sorter or stocker equipment, in processing equipment, and a transfer system.
摘要:
An integrated robotic mechanism is disclosed for improving transport equipment, integrating an object movement with other functionalities such as alignment or identification. The disclosed integrated robot assembly can comprise a multiple end effector for moving a plurality of workpieces, a single end effector for moving a single workpiece, a rotation chuck incorporated on the robot body to provide alignment capability, and an optional identification subsystem for identify the object during transport. The present invention robot assembly can be used in a sorter or stocker equipment, in processing equipment, and a transfer system.
摘要:
An integrated high speed robotic mechanism is disclosed for improving transport equipment, integrating an object movement with other functionalities such as alignment or identification. The disclosed integrated robot assembly typically comprises an end effector for moving the object in and out of a chamber, a rotation chuck incorporated on the robot body to provide centering and theta alignment capability, and an optional identification subsystem for identifying the object during transport. The present invention also discloses a transfer robot system, employing a plurality of integrated robot assemblies; a transfer system where a transfer robot system can service a plurality of connected chambers such as FOUP or FOSB; a front end module (FEM); or a sorter system. Through the use of these incorporated capabilities into the moving robot, single object transfer operations can exceed 500 parts per hour.