摘要:
The present invention discloses a method for determining user channel impulse response in the TD-SCDMA system, including: setting one or more than one synchronous ID code and establishing corresponding relations between channel estimation parameters of each user and the synchronous ID code and a sub-frame number of a sub-frame transmitting the synchronous ID code; transmitting, by each user, a corresponding synchronous ID code in a sub-frame identified by a sub-frame number corresponding to channel estimation parameters according to the relations established in step A, wherein timing advance of transmitting the synchronous ID code is the same with that of transmitting uplink service data of the user; at Node B, continuing to detect whether there is the synchronous ID code in received signals, if there is one or more than one synchronous ID code, determining the channel estimation parameters of the user transmitting the synchronous ID code according to the detected synchronous ID code, sub-frame number of the current sub-frame and the corresponding relations established in step A; and at Node B, computing the channel impulse response of the user according to the determined channel estimation parameters and arriving time of the detected synchronous ID code.
摘要:
The present invention discloses a method for determining user channel impulse response in the TD-SCDMA system, including: setting one or more than one synchronous ID code and establishing corresponding relations between channel estimation parameters of each user and the synchronous ID code and a sub-frame number of a sub-frame transmitting the synchronous ID code; transmitting, by each user, a corresponding synchronous ID code in a sub-frame identified by a sub-frame number corresponding to channel estimation parameters according to the relations established in step A, wherein timing advance of transmitting the synchronous ID code is the same with that of transmitting uplink service data of the user; at Node B, continuing to detect whether there is the synchronous ID code in received signals, if there is one or more than one synchronous ID code, determining the channel estimation parameters of the user transmitting the synchronous ID code according to the detected synchronous ID code, sub-frame number of the current sub-frame and the corresponding relations established in step A; and at Node B, computing the channel impulse response of the user according to the determined channel estimation parameters and arriving time of the detected synchronous ID code.
摘要:
The present invention discloses a cell handoff method and a user equipment based on a TDD system. The method includes: step A. a UE measures received pilot channels of a source cell and a neighboring cell according to a measurement control message and reports measurement result to a RNC; step B. the RNC, determines whether a target cell to be subject to a cell handoff process has available resources at a time slot different from that of the source cell and if yes, transmits a cell handoff command to the UE, allocates available resources for the UE in the target cell and transmits traffic carrier data of the UE to the source cell and the target cell respectively; and step C. after receiving the cell handoff command, the UE communicates with the source cell and the target cell at a same frame and at same time according to the allocated available resources. According to the handoff method of the present invention, UE can more reliably receive the handoff control command transmitted by the RNC and during the handoff process, the transmission power and interference are reduced so that the reliable handoff of a UE is guaranteed and the system performance is improved.
摘要:
The present invention discloses a cell handoff method and a UE based on a TDD system. A UE measures received pilot channels of a source cell and a neighboring cell according to a measurement control message and reports measurement result to a RNC. The RNC, determines whether a target cell to be subject to a cell handoff process has available resources at a time slot different from that of the source cell and if yes, transmits a cell handoff command to the UE, allocates available resources for the UE in the target cell and transmits traffic carrier data of the UE to the source cell and the target cell respectively. After receiving the cell handoff command, the UE communicates with the source cell and the target cell at a same frame and at same time according to the allocated available resources.
摘要:
Finding a channel impulse response estimation window in a current cell for at least one mobile terminal in a neighboring cell is disclosed. This can serve to mitigate interference caused by mobile terminals in neighboring cells in and among communications ongoing in a current cell. In one example, a method for A method for determining such a channel impulse response estimation window includes presetting, in the neighboring cell, at least two channel impulse response peak locations of respective mobile terminals in first and second predetermined periods with a predetermined peak location change pattern, and then upon receiving communication from a mobile terminal of the neighboring cell, analyzing channel impulse responses to identify the peak location change pattern with regard to first and second peak locations. The method further includes identifying a variation range for a channel impulse response of a primary path of the mobile terminal, and determining a channel impulse response estimation window for the mobile terminal based on the identified variation range and a preferred estimation window size.
摘要:
Finding a channel impulse response estimation window in a current cell for at least one mobile terminal in a neighboring cell is disclosed. This can serve to mitigate interference caused by mobile terminals in neighboring cells in and among communications ongoing in a current cell. In one example, a method for A method for determining such a channel impulse response estimation window includes presetting, in the neighboring cell, at least two channel impulse response peak locations of respective mobile terminals in first and second predetermined periods with a predetermined peak location change pattern, and then upon receiving communication from a mobile terminal of the neighboring cell, analyzing channel impulse responses to identify the peak location change pattern with regard to first and second peak locations. The method further includes identifying a variation range for a channel impulse response of a primary path of the mobile terminal, and determining a channel impulse response estimation window for the mobile terminal based on the identified variation range and a preferred estimation window size.
摘要:
The present invention discloses a method for dynamically selecting antenna array architecture, deciding a basic antenna array, determining a number of required array elements, selecting determined number of array elements from all the array elements in the basic antenna array to form an antenna array architecture and receiving and detecting signals with the current antenna array architecture, the method further including: determining whether transmission time intervals and/or slot positions of received signals change, if so, re-selecting the determined number of array elements from all the array elements in the basic antenna array to form a new antenna array architecture and receiving and detecting signals with the new antenna array architecture, otherwise, continuing to determine. According to this method, not only the realization is simple but also that each array elements in the antenna array can receive arriving signals more reasonably so that the reliability of the antenna array to receive signals is improved.
摘要:
The invention relates to a cell initial search method for user equipment (UE) in a CDMA digital cellular mobile communication system. The method includes: a UE after selecting a working frequency point, obtains downlink synchronization with the base station; and corrects carrier deviation between the UE and the base station. The downlink synchronization includes: deciding a range of downlink training sequence timeslot (DwPTS) based on training sequence power characteristic window value method; solving correlation of received data and training sequence in the range to obtain accurate receiving position of a UE. The correction of carrier deviation between a UE and the base station includes: estimating carrier deviation between a UE and the base station by software, recovering carrier frequency difference by using decision and feedback method to adjust hardware and carrier deviation correction method based on joint detection to correct carrier deviation.
摘要:
The present invention discloses a method for detecting random access of User Equipment (UE), applicable to a mobile communication system consisting of at least one Base Station (BS) and a group of UEs; wherein the BS and the group of UE use a set of N (N is a positive integer) orthogonal or quasi-orthogonal pseudo-random sequence codes for UEs' random access. The method comprises: BS receiving a random access signal, and making correlation operation of the received signal with each pseudo-random sequence code in said code set successively to obtain a corresponding correlation result window; finding the maximum correlation peak in the correlation result window, and then dividing a correlation peak window and the front-side and rear-side windows thereof; setting one or more thresholds and comparing them with correlation results in the correlation peak window or in the correlation peak window and the front-side and rear-side windows; when conditions are satisfied, determining that the pseudo-random sequence code involved in the above correlation operation is the pseudo-random sequence code selected by the UE randomly accessed at the moment; thereby, detecting each randomly accessed UE.
摘要:
A method for performing multi-user joint-detection in a neighboring cell in a TDD-CDMA system presets slot types and includes: a network device configuring a slot type of each uplink slot in its administrated cells and a base station of each cell obtaining a slot type of each uplink slot in a neighboring cell from the network device; the network device configuring for each user a slot for transmitting uplink data and a midamble and channelization code to be used according to the slot type of each uplink slot and a service type of each user in each cell; each user in each cell using the configured midamble and channelization code to transmit uplink data in the configured slot; and the base station detecting activated code channels in the neighboring cell according to the received uplink data transmitted by users in the neighboring cell and obtaining midamble used by each user in the neighboring cell according to the channeliazation codes of the activated code channels and according to the slot type of each uplink slot in the neighboring cell so that the base station may perform the multi-user joint-detection in the neighboring cell.