摘要:
A method of calculating a power threshold for a secondary communication channel capable of operating in DTX mode in forward or reverse links so that the communication channel is prevented from entering a deadlock state. Power threshold information for an associated primary channel and the secondary channel are used to update the established power threshold for the communication channel. The updated power threshold for the communication is thus calculated by combining previously established thresholds for the communication channel and associated primary channel with a current established threshold for the associated primary channel.
摘要:
A method and apparatus for detecting discontinued transmission (DTX) frames in data frames received over a link or channel, is described, where a DTX frame is a frame that does not carry data and which is transmitted with zero power over the link or channel. The method and apparatus determines whether a received data frame is a DTX frame based on a plurality of metrics. Based on the metrics, the method and apparatus may effectively discriminate a case where a data frame is received as an erasure (e.g., data frame received with errors), and a case where a transmitted data frame is received as a DTX frame.
摘要:
In the method, a current channel condition is estimated based at least in part on a previous channel quality indicator and power control information received after the previous channel quality indicator.
摘要:
A method of scaling soft symbols of an uplink E-DCH is provided, where the E-DCH is received from a user in a network for processing in a base station receiver in the network employing a log-MAP turbo decoding algorithm to process the E-DCH. The E-DCH includes an E-DPDCH from which the soft symbols are generated at the base station receiver, and an E-DPCCH used to transmit control information associated with the E-DPDCH, which along with configuration information from a radio network controller (RNC) of the network enables the base station receiver to determine a reference amplitude ratio linked to the actual power offset of the E-DPDCH from the legacy DPCCH. In the method, an estimated E-DPDCH to DPCCH amplitude ratio that represents a scaling factor for the soft symbols is determined, and the soft symbols are scaled by the scaling factor to enable the soft symbols to be processed by the log-MAP turbo decoding algorithm in the base station receiver.
摘要:
In a method for determining a transmitted data rate, a received data frame may be decoded using different candidate rates to generate a first decoded bit sequence associated with each candidate rate. A first frame quality indicator and a first error metric may be generated for each of the candidate rates based on the associated first decoded bit sequence and a decoding metric for the associated first decoded bit sequence. One of the candidate rates may be selected as the transmitted data rate based on the first frame quality indicators, the first error metrics and an error metric threshold.
摘要:
A plurality of decoding metrics for a current frame may be generated based on a correlation set for a current frame and a correlation set for at least one previous frame. Whether a signal is present on a control channel may then be determined based on the generated decoding metrics.
摘要:
The need for separate CRC bits is eliminated by taking advantage of what has been determined to be an embedded error detection capability in a turbo code itself to perform error detection following turbo decoding. Specifically, since the two constituent encoders of a turbo encoder that are used to encode a data packet produce two systematic codes that share the same systematic bits one code, one is used to serve as the parity check for the other. The sign of the log likelihood ratio (LLR) of each systematic bit in a block of decoded data calculated at the end of a turbo decoding cycle is compared with the sign of the LLR of each corresponding bit that was calculated at a previous turbo decoding cycle. If the signs of the LLRs for each comparison do not agree, then a packet error is determined to have occurred; otherwise no packet error is detected.
摘要:
A method of scaling soft symbols of an uplink E-DCH is provided, where the E-DCH is received from a user in a network for processing in a base station receiver in the network employing a log-MAP turbo decoding algorithm to process the E-DCH. The E-DCH includes an E-DPDCH from which the soft symbols are generated at the base station receiver, and an E-DPCCH used to transmit control information associated with the E-DPDCH, which along with configuration information from a radio network controller (RNC) of the network enables the base station receiver to determine a reference amplitude ratio linked to the actual power offset of the E-DPDCH from the legacy DPCCH. In the method, a reference E-DPDCH to DPCCH amplitude ratio is multiplied by a value greater than 1 to output a scaling factor, and the soft symbols are scaled by the scaling factor for processing by the log-MAP turbo decoding algorithm in the base station receiver.
摘要:
The need for separate CRC bits is eliminated by taking advantage of what has been determined to be an embedded error detection capability of the tail bits generated by the constituent encoders of a turbo coder to perform error detection following turbo decoding. Specifically, it has been recognized that the tail bits are similar to CRC bits that would be generated by a CRC encoder that uses as its generating polynomial the feedback polynomial used by the turbo encoder. At the turbo decoder, after a final turbo decoding iteration cycle, a check is performed on the decoded systematic information bits by calculating the tail bits from the decoded information bits using that generating polynomial and bit-by-bit comparing the calculated tail bits with the systematic tail bits decoded by the turbo decoder. If a mismatch occurs at one or more bit positions, an error is indicated.
摘要:
In a method of detecting a signal, a control channel associated with a physical channel may be decoded to produce at least one decoding metric. A control channel signal on the control channel may then be detected based on the decoding metric.