Abstract:
A system or circuit for generating timing events for mobile communications includes fetching network parameters corresponding to a cellular network. The network parameters are used to program a set of programmable registers. The timing events then are generated based on the network parameters. The timing events enable a user equipment (UE) or a base station to operate in multiple cellular networks.
Abstract:
A communication system for communicating control data between a processor and an interface includes configuration registers, a packet processor, an interrupt processor, a timing monitor, a configuration sampler, a control-frame processor, a mode selector, and a transceiver. The processor, timing monitor, and configuration sampler generate control data, a timing signal and frame structure data, respectively. The packet processor generates a transmit control configuration packet, which includes the control data. The control-frame processor inserts the transmit control configuration packet into a first control frame, outputs the control frame to the interface and extracts a receive-configuration packet from a second control frame for generating one or more interrupts. The mode selector generates mode and idle signals for determining the mode of the interface, based on the idle signal. In one implementation, the system uses JESD control frames to reduce GPIO pin usage.
Abstract:
A system or circuit for generating timing events for mobile communications includes fetching network parameters corresponding to a cellular network. The network parameters are used to program a set of programmable registers. The timing events then are generated based on the network parameters. The timing events enable a user equipment (UE) or a base station to operate in multiple cellular networks.
Abstract:
A base transceiver station (BTS) includes dedicated memories to store uplink real-time (RT) data received by way of an antenna of the BTS and downlink RT data generated by processors of the BTS. The dedicated memories serve a dedicated number of processors, which prevents over-run and under-run of antenna buffers and provides deterministic data flow necessary to stream time-critical uplink and downlink RT data. Thus, a high and dedicated bandwidth for the uplink and downlink RT data is ensured.
Abstract:
A base transceiver station (BTS) includes dedicated memories to store uplink real-time (RT) data received by way of an antenna of the BTS and downlink RT data generated by processors of the BTS. The dedicated memories serve a dedicated number of processors, which prevents over-run and under-run of antenna buffers and provides deterministic data flow necessary to stream time-critical uplink and downlink RT data. Thus, a high and dedicated bandwidth for the uplink and downlink RT data is ensured.