摘要:
A device and a process for producing thin steel metal bars in which an elongated metal product is brought into contact with a molten metal causing the latter to crystallize. Different materials are used for the elongated metal product and the molten metal, whereby one of the materials is a stainless steel. A temperature of the elongated metal product, a temperature of the molten metal and a dwelling time of the elongated metal product in the molten metal are set in such a way that the molten metal crystallizes on the elongated metal product so as to form a layer having a thickness of 2% to 20% of a thickness of the elongated metal product.
摘要:
A process for producing a steel strip with properties of a cold-rolled product. The process including comprising the sequential steps of: a) producing a thin slab 30 to 100 mm thick from a steel melt by continuous casting in a continuous casting machine, and, after a cast strip emerges from a mold of the continuous casting machine, cast rolling the cast strip with a liquid core to reduce thickness of the cast strip by at least 10%; b) descaling the thin slab produced according to step a); c) hot rolling the descaled thin slab at temperatures in a range of 1150.degree. to 900.degree. C. for reducing thickness by at least 50% to produce an intermediate strip with a maximum thickness of 20 mm; d) after hot rolling, accelerated cooling of the intermediate strip to a temperature in a range of 850.degree. to 600.degree. C.; e) rolling down the cooled intermediate strip by isothermic rolling at 850.degree. to 600.degree. C. on a finishing train with at least three stands into strips with a maximum thickness of 2 mm, whereby the strip thickness is reduced by at least 25% per roll pass; and f) subsequently cooling the isothermic rolled steel strip in accelerated fashion to a temperature no greater than 100.degree. C.
摘要:
The invention relates to a method and a device for the production of a strip-like metallic composite material by the high-temperature dip coating of a metallic carrier strip, consisting of a metallurgic vessel for receiving the liquid depositing material, through which the carrier strip is capable of being led in a preferably vertical run-through direction by means of pairs of rollers arranged on the entry and the exit side, and of a preheating device for the carrier strip, said preheating device being located upstream of the metallurgic vessel. At the same time, the preheating device (41) is arranged in a housing (61) which is arranged in the entry region upstream of the metallurgic vessel (11) and surrounds the carrier strip (21) and into which the medium coming from a media supply (52) is capable of being introduced via at least one feed (51) led into the housing.