摘要:
A device and a process for producing thin steel metal bars in which an elongated metal product is brought into contact with a molten metal causing the latter to crystallize. Different materials are used for the elongated metal product and the molten metal, whereby one of the materials is a stainless steel. A temperature of the elongated metal product, a temperature of the molten metal and a dwelling time of the elongated metal product in the molten metal are set in such a way that the molten metal crystallizes on the elongated metal product so as to form a layer having a thickness of 2% to 20% of a thickness of the elongated metal product.
摘要:
Gel formers comprising acid aluminum phosphate and a reaction product of boric acid and an alkanolamine, and further comprising alkali metal compounds in the aluminum: alkali metal ratio of 1:1.3-2.5 require short gelling times, and form gels having improved melting resistance.
摘要:
The invention relates to a method for the production of hot-finished, particularly hot-rolled, seamless pipes having optimized fatigue properties in the welded state, having an outside diameter of up to 711 mm and a nominal wall thickness of up to 100 mm, made of metal, in particular steel. After hot or finish rolling, a defined pipe cross-section is produced on at least one pipe end across a predetermined length, having tight tolerances for inside and outside diameters, wherein the cross-section can then be welded to the pipe end of another pipe. According to the invention, in a region a wall thickness is created in a first step at the pipe end in question, the thickness being bigger than on the remaining pipe body, wherein the outside diameter is increased and/or the inside diameter is reduced. In a second step, the required pipe cross-section is produced in said region by mechanical treatment, and the transition from the treated to the untreated region of the pipe is produced with low surface roughness and almost notch-free, and the residual wall thickness remaining in the treatment region is within the required tolerances.
摘要:
The invention relates to a method for the production of hot-finished, particularly hot-rolled, seamless pipes having optimized fatigue properties in the welded state, having an outside diameter of up to 711 mm and a nominal wall thickness of up to 100 mm, made of metal, in particular steel. After hot or finish rolling, a defined pipe cross-section is produced on at least one pipe end across a predetermined length, having tight tolerances for inside and outside diameters, wherein the cross-section can then be welded to the pipe end of another pipe. According to the invention, in a region a wall thickness is created in a first step at the pipe end in question, the thickness being bigger than on the remaining pipe body, wherein the outside diameter is increased and/or the inside diameter is reduced. In a second step, the required pipe cross-section is produced in said region by mechanical treatment, and the transition from the treated to the untreated region of the pipe is produced with low surface roughness and almost notch-free, and the residual wall thickness remaining in the treatment region is within the required tolerances.
摘要:
The fire-resistant window of fire resistance class E according to DIN EN 357 has a window frame system (1, 6) and at least one thermally or chemically pre-stressed monolithic fire-resistant glass pane (2) mounted in the window frame system (1, 6). The at least one thermally or chemically pre-stressed monolithic fire-resistant glass pane (2) is made of a high-temperature-melting aluminosilicate glass with a softening point (log η=7.6) above 875° C., wherein η is the viscosity, and with a bending strength of over 100 N/mm2. The glass pane (2) is also substantially impermeable to ultraviolet radiation.
摘要翻译:根据DIN EN 357的耐火等级E的防火窗具有窗框系统(1,6)和至少一个安装在窗框系统中的热或化学预应力单块防火玻璃板(2) (1,6)。 所述至少一种热或化学预应力的整体式耐火玻璃板(2)由高于875℃的软化点(log eta = 7.6)的高温熔融铝硅酸盐玻璃制成,其中eta为 粘度,弯曲强度超过100 N / mm 2。 玻璃板(2)也基本上不透紫外线。
摘要:
Fire-resistant glass, produced by placing between two panes of glass a gel former containing a) an acid aluminum phosphate, b) a reaction product of boric acid with an alkanolamine and one or more alkali metal compounds, and heating the glass to convert the gel former to a gel.