Abstract:
An unreacted gas detector including a reactor unit for producing a target gas by way of reacting material gases in its reaction chamber, a sensor body connected to the reactor unit, a measurement space provided in the sensor body for allowing the target gas to flow, an unreacted gas sensor having a temperature measurement section covered by a catalyst layer and disposed inside the measurement space, and a target gas sensor with its temperature measurement section disposed in the sensor body. Any unreacted gas remaining in the target gas is reacted by the catalyst layer so that a resulted temperature change is detected by the unreacted gas sensor, and a target gas temperature is measured by target gas temperature sensor, thus finding a unreacted gas concentration from a temperature difference between the temperatures obtained by the unreacted gas sensor and the target gas temperature sensor.
Abstract:
A safe, reduced pressure apparatus for generating water vapor from hydrogen and oxygen and feeding high purity moisture to processes such as semiconductor production. The apparatus eliminates the possibility of the gas igniting by maintaining the internal pressure of the catalytic reactor for generating moisture at a high level while supplying moisture gas from the reactor under reduced pressure. A heat dissipation reactor improvement substantially increases moisture generation without being an enlargement in size by efficient cooling of the reactor alumite-treated fins.
Abstract:
A reactor (2) for generating moisture in which the starting material gases are caused to undergo turbulence so as to increase the efficiency of the moisture-generating reaction. The reactor (2) for generating moisture comprises a first inlet-side reactor structural component (4) which is adapted to supply the starting material gases from a starting material gas feed port into the inlet side of an interior space; a second outlet-side reactor structural component (2) which is adapted to transfer generated gas to a moisture gas take-out port (30a) from a moisture gas feed passage (28); a reflector (12) clamped air-tightly between the first and second structural components (4, 20 ) and having a plurality of blowing holes (16) at predetermined locations for communicating with the inlet-side interior space (8); a reactor chamber (18) formed with a narrow gap d provided between the reflector (12) and the second structural component (20); a nozzle hole (24) formed in the second structural component (20) for communicating with the moisture gas feed passage (28); and a coating catalyst layer (21) formed on a wall surface (20a) of the reaction chamber opposing the reflector (12); wherein when hydrogen and oxygen gas fed from the starting material gas feed port flow into the reaction chamber (18) through the blowing holes (16) in the reflector (12), they react and generate moisture gas by a non-combustive pathway by the catalytic effect of the coating catalyst layer (21)