Abstract:
The disclosure relates to technology for beam searching. Beam searching includes forming an omnidirectional radiation pattern by a group of antenna elements including one antenna element from each of one or more phased array antennas. In response to detection of beams from a transmitter, searching for one antenna element in the group according to a combined signal strength of each antenna element in the group; and enabling a phased array antenna with the one antenna element to align with the beams.
Abstract:
An apparatus comprises a radio frequency (RF) antenna circuit; an antenna aperture tuning circuit; an antenna impedance measurement circuit; and a processor circuit electrically coupled to the tunable antenna aperture circuit and the impedance measurement circuit. The processor circuit is configured to: set the antenna aperture tuning circuit to an antenna aperture tuning state according to one or more parameters of an RF communication network; initiate an antenna impedance measurement; and change the antenna aperture tuning state to an antenna aperture tuning state indicated by the antenna impedance.
Abstract:
An apparatus comprises a radio frequency (RF) antenna circuit; an antenna aperture tuning circuit; an antenna impedance measurement circuit; and a processor circuit electrically coupled to the tunable antenna aperture circuit and the impedance measurement circuit. The processor circuit is configured to: set the antenna aperture tuning circuit to an antenna aperture tuning state according to one or more parameters of an RF communication network; initiate an antenna impedance measurement; and change the antenna aperture tuning state to an antenna aperture tuning state indicated by the antenna impedance.
Abstract:
The disclosure relates to technology beam steering in which one or more antennas are configured to form a beam directed to a first beam direction based on a configuration corresponding to an environment. A change in direction of the beam is identified in response to a change in orientation of user equipment, the change in orientation determined via one or more sensors in the user equipment, and a second beam direction is calculated based on a the first beam direction and the change in orientation of the user equipment. The one or more antennas are then configured by steering the beam to the second beam direction to compensate for the change in orientation of the user equipment.
Abstract:
An electronic device includes a housing having a first panel connected to a second panel movable between folded and unfolded configurations. A first antenna is located adjacent to the first panel and a second antenna is located adjacent to the second panel. The second antenna is activated when the housing is in an unfolded configuration and is deactivated when the housing is in a folded configuration.
Abstract:
An apparatus for satisfying Specific Absorption Rate (SAR) compliance criteria including a first capacitance sensor, a second capacitance sensor, a memory, and a processor. The memory is configured to store pre-established proximity regions that include a free space region of proximity based on baseline capacitance measurements obtained from the sensors when no human body is proximate a wireless device and a first region of proximity based on initial capacitance measurements obtained from the sensors when the human body is spaced apart from the wireless device by a first predetermined separation distance. The processor is configured to instruct a radio frequency (RF) transmitter to operate at a first output power when subsequent capacitance measurements received from the sensors are within the free space region of proximity and at a second output power, less than the first output power when the subsequent capacitance measurements are within the first region of proximity.
Abstract:
An embodiment eyeglass display includes a processor disposed in a system enclosure and a display system connected to the processor and configured to display data to a user via a display screen in an eye region. A first antenna is disposed in the system enclosure and operably connected to the processor. The processor is configured to cause the first antenna to transmit on a first radio frequency (RF) band. A second antenna is disposed outside the system enclosure and operably connected to the processor, and the processor is configured to cause the second antenna to transmit on a second RF band. The second antenna extends laterally along a first edge of the at least one eye region.
Abstract:
A mobile device for determining a handling condition of the mobile device and a method of use thereof. One embodiment of the mobile device includes: at least one left capacitive proximity sensor disposed on a left side of the mobile device and operable to detect a hold condition, at least one right capacitive proximity sensor disposed on a right side of the mobile device and operable to detect a hold condition, an accelerometer disposed in the mobile device and operable to detect an orientation of the mobile device, an ambient light proximity sensor disposed in the mobile device and operable to detect a proximity of a user's head, and a processor operable to execute an application configured to gain access to and employ the hold condition, the orientation, and the proximity of the user's head to determine a handling condition.
Abstract:
An electronic device includes a housing having a first panel connected to a second panel movable between folded and unfolded configurations. A first antenna is located adjacent to the first panel and a second antenna is located adjacent to the second panel. The second antenna is activated when the housing is in an unfolded configuration and is deactivated when the housing is in a folded configuration.
Abstract:
A mobile device for determining a handling condition of the mobile device and a method of use thereof. One embodiment of the mobile device includes: at least one left capacitive proximity sensor disposed on a left side of the mobile device and operable to detect a hold condition, at least one right capacitive proximity sensor disposed on a right side of the mobile device and operable to detect a hold condition, an accelerometer disposed in the mobile device and operable to detect an orientation of the mobile device, an ambient light proximity sensor disposed in the mobile device and operable to detect a proximity of a user's head, and a processor operable to execute an application configured to gain access to and employ the hold condition, the orientation, and the proximity of the user's head to determine a handling condition.