Abstract:
The invention relates to a method for detection of a leak from a tank for liquid gas, said tank comprising a membrane surrounding the liquid gas, the membrane being surrounded by an insulation space which separates the membrane from a wall, the insulation space being filled an inert gas which is injected and extracted by at least one duct. The detection method comprises the following steps:
determining 921 a first variation of mass of inert gas ΔM1 between two moments by measuring the gas added and removed by the duct; calculating 922 a second variation of mass of inert gas ΔM2 corresponding to a difference between two masses of inert gas measured in the insulation space; and comparing 931 the first variation with the second variation, and triggering an alarm if a difference E1 between the first variation and the second variation of mass of inert gas is greater than a first threshold S1.
Abstract:
A sealed and insulating reservoir contains a pressurized cold fluid in a rigid, sealed enclosure. A fluidtight membrane is positioned to contact the cold fluid contained in the reservoir. An insulating barrier is placed between the fluidtight membrane and the internal surface of the rigid enclosure, with the insulating barrier forming a support surface to support the fluidtight membrane. A pressure balancing device is able to limit the pressure difference between a first sealed volume located inside the fluidtight membrane, and a second sealed volume located outside the fluidtight membrane. The pressure balancing device typically includes a fluid circuit having two chambers sealingly separated by a movable separator. The first chamber is linked to the first sealed volume, and the second chamber is linked to the second sealed volume. The movable separator exerts a loading force in the direction of the second chamber.
Abstract:
A method for checking the sealing of a sealed tank for storing a liquefied gas at low temperature, the tank having an inner hull and a secondary sealing membrane, a secondary space that is arranged between the inner hull and the secondary sealing membrane, a primary sealing membrane and a primary space that is arranged between the primary sealing membrane and the secondary sealing membrane is disclosed. The method has the following main steps: generating a pressure lower than the pressure of the primary space in the secondary space using a suction device, measuring the temperature of an outer surface of the inner hull, and detecting the location of a sealing defect of the secondary sealing membrane in the form of a cold spot on the outer surface of the inner hull.
Abstract:
The invention relates to a method for treating and feeding natural gas from a tank for storing liquefied gas storage to an apparatus for generating power, and to a burner of an apparatus for generating power in a ship, said method comprising the following consecutive steps: supplying power to the apparatus for generating power, during which step natural gas is fed through a phase separator that returns a heavy fraction of the natural gas containing the hydrocarbons having the longest carbon chains to the tank as condensate and feeding a light fraction of the natural gas containing the hydrocarbons having the shortest carbon chains to the apparatus for generating power; and then recovering the heavy fraction of the natural gas, during which step natural gas is carried from the tank to the burner, bypassing said phase separator.
Abstract:
A sealed and insulating reservoir contains a pressurized cold fluid in a rigid, sealed enclosure. A fluidtight membrane is positioned to contact the cold fluid contained in the reservoir. An insulating barrier is placed between the fluidtight membrane and the internal surface of the rigid enclosure, with the insulating barrier forming a support surface to support the fluidtight membrane. A pressure balancing device is able to limit the pressure difference between a first sealed volume located inside the fluidtight membrane, and a second sealed volume located outside the fluidtight membrane. The pressure balancing device typically includes a fluid circuit having two chambers sealingly separated by a movable separator. The first chamber is linked to the first sealed volume, and the second chamber is linked to the second sealed volume. The movable separator exerts a loading force in the direction of the second chamber.