Abstract:
Nucleic acid oligonucleotide sequences are disclosed which include amplification oligomers and probe oligomers which are useful for detecting multiple types of human papillomaviruses (HPV) associated with cervical cancer. Methods for detecting multiple HPV types in biological specimens by amplifying HPV nucleic acid sequences in vitro and detecting the amplified products are disclosed.
Abstract:
Nucleic acid oligonucleotide sequences are disclosed which include amplification oligomers and probe oligomers which are useful for detecting multiple types of human papillomaviruses (HPV) associated with cervical cancer. Methods for detecting multiple HPV types in biological specimens by amplifying HPV nucleic acid sequences in vitro and detecting the amplified products are disclosed.
Abstract:
Nucleic acid oligonucleotide sequences are disclosed which include amplification oligomers and probe oligomers which are useful for detecting multiple types of human papillomaviruses (HPV) associated with cervical cancer. Methods for detecting multiple HPV types in biological specimens by amplifying HPV nucleic acid sequences in vitro and detecting the amplified products are disclosed.
Abstract:
Nucleic acid oligonucleotide sequences are disclosed which include amplification oligomers and probe oligomers which are useful for detecting multiple types of human papillomaviruses (HPV) associated with cervical cancer. Methods for detecting multiple HPV types in biological specimens by amplifying HPV nucleic acid sequences in vitro and detecting the amplified products are disclosed.
Abstract:
Nucleic acid oligonucleotide sequences are disclosed which include amplification oligomers and probe oligomers which are useful for detecting multiple types of human papillomaviruses (HPV) associated with cervical cancer. Methods for detecting multiple HPV types in biological specimens by amplifying HPV nucleic acid sequences in vitro and detecting the amplified products are disclosed.
Abstract:
Compositions are disclosed as nucleic acid sequences that may be used as amplification oligomers, including primers, capture probes for sample preparation, and detection probes specific for Legionella pneumophila 16S or 23S rRNA sequences or DNA encoding 16S or 23S rRNA. Methods are disclosed for detecting the presence of L. pneumophila in samples by using the disclosed compositions in methods that include in vitro nucleic acid amplification of a 16S rRNA sequence or DNA encoding the 16S rRNA sequence, or of a 23S rRNA sequence or DNA encoding the 23S rRNA sequence to produce a detectable amplification product.
Abstract:
The disclosed invention is related to compositions, kits and methods comprising one or more oligomers targeting 16S rRNA target nucleic acid from Campylobacter species jejuni, coli and/or lari. Compositions include amplification oligomers, detection probe oligomers and/or target capture oligomers. Kits and methods comprise at least one of these oligomers.
Abstract:
Nucleic acid oligonucleotide sequences are disclosed which include amplification oligomers and probe oligomers which are useful for detecting multiple types of human papillomaviruses (HPV) associated with cervical cancer. Methods for detecting multiple HPV types in biological specimens by amplifying HPV nucleic acid sequences in vitro and detecting the amplified products are disclosed.
Abstract:
Nucleic acid oligonucleotide sequences are disclosed which include amplification oligomers and probe oligomers which are useful for detecting multiple types of human papillomaviruses (HPV) associated with cervical cancer. Methods for detecting multiple HPV types in biological specimens by amplifying HPV nucleic acid sequences in vitro and detecting the amplified products are disclosed.