Abstract:
The present disclosure relates to a self-powered utility delivery system that includes an energy generator that produces electrical energy and consequently regulates a pressure of utility flowing through the self-powered utility delivery system. Additionally, the self-powered utility delivery system includes an electronic utility meter that monitors a quantity (e.g., volume) of utility that flows through the self-powered utility delivery system and toward a consumer.
Abstract:
The present disclosure relates to a self-powered utility delivery system that includes a regulator that decreases a pressure of the utility flowing through the self-powered utility delivery system while producing electrical energy as a result of pressure regulation. Additionally, the self-powered utility delivery system includes an electronic utility meter that monitors a quantity (e.g., volume) of utility that flows through the self-powered utility delivery system and toward a consumer.
Abstract:
A system for metering gas includes a housing configured to allow a flow of the gas between an input port and an output port. Further, the system includes a flow manager disposed in the housing and configured to modify at least one physical characteristic of the flow of the gas in the housing. Furthermore, the system includes a flow sensor disposed in the housing and configured to generate an electrical signal in response to flow characteristics of the gas in the housing. Moreover, the system also includes a processor configured to determine at least one flow parameter of the gas based on an amplitude characteristic of the electrical signal, a temporal characteristic of the electrical signal, or both the amplitude characteristic and the temporal characteristic of the electrical signal. A method for metering the gas is also presented.
Abstract:
A system for metering gas a fluid stream includes a primary conduit and a secondary conduit coupled to the primary conduit such that the secondary conduit receives a portion of a fluid stream passing through the primary conduit. A flow manager disposed in the primary conduit is configured to maintain a predetermined relationship between at least one first physical characteristic of the fluid stream and at least one second physical characteristic of the portion of the fluid stream. A sensor measures a flow characteristic of the portion of the fluid stream and a processor determines a flow parameter of the fluid stream based, at least in part, on the predetermined relationship and one of an amplitude or temporal characteristic of the electrical signal.
Abstract:
A system for metering gas is presented. The system includes a housing configured to allow a flow of the gas between an input port and an output port. Further, the system includes a flow manager disposed in the housing and configured to modify at least one physical characteristic of the flow of the gas in the housing. Furthermore, the system includes a flow sensor disposed in the housing and configured to generate an electrical signal in response to flow characteristics of the gas in the housing. Moreover, the system also includes a processor configured to determine at least one flow parameter of the gas based on an amplitude characteristic of the electrical signal, a temporal characteristic of the electrical signal, or both the amplitude characteristic and the temporal characteristic of the electrical signal. A method for metering the gas is also presented.
Abstract:
A system for metering gas a fluid stream includes a primary conduit and a secondary conduit coupled to the primary conduit such that the secondary conduit receives a portion of a fluid stream passing through the primary conduit. A flow manager disposed in the primary conduit is configured to maintain a predetermined relationship between at least one first physical characteristic of the fluid stream and at least one second physical characteristic of the portion of the fluid stream. A sensor measures a flow characteristic of the portion of the fluid stream and a processor determines a flow parameter of the fluid stream based, at least in part, on the predetermined relationship and one of an amplitude or temporal characteristic of the electrical signal.
Abstract:
The present disclosure relates to a self-powered utility delivery system that includes an energy generator that produces electrical energy and consequently regulates a pressure of utility flowing through the self-powered utility delivery system. Additionally, the self-powered utility delivery system includes an electronic utility meter that monitors a quantity (e.g., volume) of utility that flows through the self-powered utility delivery system and toward a consumer.
Abstract:
The present disclosure relates to a self-powered utility delivery system that includes an energy generator that produces electrical energy and consequently regulates a pressure of utility flowing through the self-powered utility delivery system. Additionally, the self-powered utility delivery system includes an electronic utility meter that monitors a quantity (e.g., volume) of utility that flows through the self-powered utility delivery system and toward a consumer.
Abstract:
The present disclosure relates to a self-powered utility delivery system that includes a regulator that decreases a pressure of the utility flowing through the self-powered utility delivery system while producing electrical energy as a result of pressure regulation. Additionally, the self-powered utility delivery system includes an electronic utility meter that monitors a quantity (e.g., volume) of utility that flows through the self-powered utility delivery system and toward a consumer.