Abstract:
An arrangement for a sensor of automation technology, the arrangement selecting a radio module feature, and the radio module feature depending on a sensor structure. The arrangement including a controller that selects the radio module feature according to the sensor structure.
Abstract:
An arrangement for a sensor of automation technology, the arrangement selecting a radio module feature, and the radio module feature depending on a sensor structure. The arrangement including a controller that selects the radio module feature according to the sensor structure.
Abstract:
An electronic sensing and allocation system is provided for a distributed water infrastructure containing a plurality of differing appliances. The system may receive, from at least one sensor upstream of the plurality of differing appliances, a plurality of signals indicative of water usage within the distributed water infrastructure. The system may output a first indication of a first volume of water together with an indicator attributing the first volume of water to a first rate schedule, and output a second indication of a second volume of water together with an indicator attributing the second volume of water to a second rate schedule. The system may enable billing of the first and second volumes of water to a consumer at differing rates based on differing uses.
Abstract:
An abnormal consumption detection system is provided with remote valve control for a distributed water infrastructure. The system may comprise an electronically controllable valve, a remote communication transmitter, a remote communication receiver, at least one sensor for measuring water flow information associated with the distributed water infrastructure, and at least one processor. The system may determine from the water flow information obtained from the at least one sensor a potential abnormal consumption associated with the distributed water infrastructure. The system may automatically close a valve, without human intervention, when the potential abnormal consumption is determined. The system may transmit, via the remote communication transmitter to a remote administrator, alert information about the potential abnormal consumption to enable an administrator to decide based on the transmitted information whether to reopen the valve. The system may receive from the administrator via the remote communication receiver a control signal to reopen the valve, despite the information about the potential abnormal consumption, and reopen the valve.
Abstract:
A system is provided for detecting abnormal consumption in a distributed water infrastructure. The system may receive from at least one sensor associated with the distributed water infrastructure signals indicative of water usage in the distributed water infrastructure, and aggregate groups of signals to construct a plurality of time-based water event profiles, each water event profile containing a distribution of water usage indicators over time. The system may store a subset of the plurality of water event profiles in memory as normal water event profiles, and receive, from the at least one sensor, signals indicative of current water usage in the distributed water infrastructure. The system may construct, from the signals indicative of current water usage, at least one current water event profile, and compare the at least one current water event profile with normal water event profiles stored in the memory. The system may initiate remedial action if the at least one current water event profile does not substantially correspond to normal water event profiles stored in the memory.
Abstract:
Implantable sensors are described that can be utilized in conjunction with orthopedic implants for monitoring fracture healing and detecting local chemical concentrations to detect and monitor implant associated infection. The sensors can include strain gauges, electrochemical, or spectrochemical sensors that can be read transdermally using a single photodetector. Sensors can be affixed to implantable support devices so as to non-invasively monitor the effect of load on the implant to provide a quantitative assessment of when a fracture is sufficiently healed to allow safe weight-bearing upon the limb. Alternatively, sensors can monitor the local concentration of infection biomarkers, for instance to monitor the implant area for early stage infection.
Abstract:
A system is provided for differentiating between overlapping water events in a distributed water infrastructure including a plurality of water appliances. The system may comprise at least one processor. The system may repeatedly measure at least one overall water usage indicator of the distributed water infrastructure, the at least one water usage indicator including at least one of an overall flow rate and an overall flow volume in the distributed water infrastructure. The system may detect, in the repeated measurements, a first sustained increase. The system may store in memory a first indicator of the first sustained increase. The system may attribute in memory the first sustained increase to a first water event in the distributed water infrastructure. The system may, during the first sustained increase, detect in the overall measurements a second sustained increase. The system may store in memory a second indicator of the second sustained increase. The system may attribute, in memory, the second sustained increase to a second water event in the distributed water infrastructure. The system may detect, following initiation of the first sustained increase and the second sustained increase, in the repeated measurements a decrease in the overall water usage indicator. The system may attribute to the decrease a third indicator. The system may compare the third indicator with at least one of the first indicator and the second indicator stored in memory to determine a substantial match and determine a cessation of at least one of the first water event and the second water event. The system may initiate an action based on the cessation determination.
Abstract:
Distributed systems and methods for the automatic monitoring and reporting of data relating to the chemistry and flow of stormwater (i.e. stormwater data) are presented. Multiple fluid sensor devices are exposed to stormwater via positioning the sensor devices in locations of interest. The sensor devices are arranged in self-healing mesh networks. The sensor devices are enabled to acquire stormwater data indicating various fluid properties that are desired to be monitored. A sensor device is further enabled to transmit its acquired stormwater data, either directly or indirectly, to one or more remote computing devices that is hosting a stormwater monitoring application (SMA). The SMA is enabled to process and analyze the stormwater data. The SMA generates measurements and reports based on the processed and analyzed stormwater data.
Abstract:
A system or a method for measuring flow of fluid or gas, has a flow duct with at least two transducers which generate at least one beam of ultrasound in the flow duct in which ultrasound transducers are placed in a fixed positions in a duct for flowing air where the electronic device for analyzing signal from the transducers is performed in a handheld device. A transmitter circuit is permanently connected to the transducers and a receiver circuit is placed in a handheld device. The transmitter circuit has calibration data representing the actual placement of the transducers in relation to the actual duct, which calibration data is communicated by every connection to the receiver circuit. Hereby can be achieved that transducers can be permanently placed in ventilation ducts in buildings, where placement of ultrasound transducers for measurement and for calibration of measurement of an air stream is nearly impossible.
Abstract:
A communication system includes a flow measuring device and a control device. The flow measuring device includes a flow sensor that generates a flow rate signal which is a signal in accordance with a flow rate of intake air drawn into an internal-combustion engine. The flow measuring device transmits the flow rate signal. The control device receives the flow rate signal and performs at least one of injection control of fuel to be supplied to the engine and ignition control at each cylinder of the engine based on the received flow rate signal. The flow measuring device includes a measurement-side transmitting part that transmits various signals by wireless communication, and transmits the flow rate signal by the measurement-side transmitting part. The control device includes a control-side receiving part that receives the various signals by the wireless communication, and receives the flow rate signal by the control-side receiving part.