Abstract:
A decentralized electrical power allocation system is provided. The system includes a power bus, electric power consumers, and at least two power source assemblies. Each power source assembly includes a power controller and a power source. Each power controller is configured to execute an adaptive droop control scheme so as to cause their respective power sources to output power to meet a power demand on the power bus applied by the power consumers. The power output of a given power source is controlled based at least in part on correlating a power feedback of the given power source with a droop function that represents an efficiency of the given power source to generate electrical power for a given power output. The droop functions are collaboratively defined so that one power source shares more output at lower power levels while another power source shares more output at higher power levels.
Abstract:
A power generation system for an aircraft includes a first power source, a second power source, and a power dispatch module communicatively coupled with the first and second power sources. The power dispatch module includes a controller having one or more processors configured to perform a plurality of operations, including but not limited to receiving a plurality of loading data associated with the power generation system, predicting a future power demand due to future load changes using the loading data, determining first and second power setpoints for the first and second power sources, respectively, based on the future power demand due to the future load changes, and controlling first and second power outputs of the first and second power sources based on the first and second power setpoints such that the future power demand of the power generation system is shared by the first and second power sources.
Abstract:
A method of operating a fuel cell assembly for an aircraft is provided. The method includes: receiving flight load predictor data for a scheduled flight of the aircraft prior to initiation of the scheduled flight of the aircraft; and reconfiguring the fuel cell assembly in response to the received flight load predictor data prior to the initiation of the scheduled flight of the aircraft, wherein reconfiguring the fuel cell assembly comprises adding or removing a fuel cell module to or from the fuel cell assembly to increase or decrease a power capacity of the fuel cell assembly.
Abstract:
A method of operating a fuel cell assembly for an aircraft is provided. The method includes: receiving flight load predictor data for a scheduled flight of the aircraft prior to initiation of the scheduled flight of the aircraft; and reconfiguring the fuel cell assembly in response to the received flight load predictor data prior to the initiation of the scheduled flight of the aircraft, wherein reconfiguring the fuel cell assembly comprises adding or removing a fuel cell module to or from the fuel cell assembly to increase or decrease a power capacity of the fuel cell assembly.
Abstract:
A method for generating electric load models that includes receiving a plurality of measurements representative of input provided by a power source to electric loads is provided. The method includes generating a plurality of combination of model loads and assigning a contribution factor to each model load in each combination. The method further includes computing a match index for each combination for each measurement. The match index is computed by comparing a predicted output of each combination with an actual output generated by the electric loads for each input represented by each measurement. Furthermore, the method includes computing a first likelihood index for each combination based on the match index for each combination for the plurality of measurements. The method also includes computing a second likelihood index for each contribution factor in each combination based on the match index for each combination.
Abstract:
A method for generating electric load models that includes receiving a plurality of measurements representative of input provided by a power source to electric loads is provided. The method includes generating a plurality of combination of model loads and assigning a contribution factor to each model load in each combination. The method further includes computing a match index for each combination for each measurement. The match index is computed by comparing a predicted output of each combination with an actual output generated by the electric loads for each input represented by each measurement. Furthermore, the method includes computing a first likelihood index for each combination based on the match index for each combination for the plurality of measurements. The method also includes computing a second likelihood index for each contribution factor in each combination based on the match index for each combination.
Abstract:
A computer system for analyzing system parameters of a simulation model for an electrical power system includes a processor programmed to generate a trajectory sensitivities matrix for the electrical power system using a dynamic model of the electrical power system that includes a plurality of system parameters, and to identify a plurality of well-conditioned parameters for a first disturbance from the plurality of system parameters based at least in part on the trajectory sensitivities matrix. The processor is also programmed to generate a first pair of well-conditioned parameters from the plurality of well-conditioned parameters. The first pair includes a first parameter and a second parameter. The processor is further programmed to compute a dependence value between the first parameter and the second parameter, and to provide an indicator of dependence between the first parameter and the second parameter using the dependence value.
Abstract:
An environmental control system assembly for an aircraft is provided. The assembly includes: an environmental control system; a fuel cell assembly in electrical communication with the environmental control system for providing electrical power to the environmental control system; and a controller operably connected to the fuel cell assembly, the controller operable to modulate an amount of power generated by the fuel cell assembly and provided to the environmental control system based on load forecasting data from an ECS load forecasting module of the controller.
Abstract:
According to some embodiments, a plurality of heterogeneous data source nodes may each generate a series of current data source node values over time that represent a current operation of an electric power grid. A real-time threat detection computer, coupled to the plurality of heterogeneous data source nodes, may receive the series of current data source node values and generate a set of current feature vectors. The threat detection computer may then access an abnormal state detection model having at least one decision boundary created offline using at least one of normal and abnormal feature vectors. The abnormal state detection model may be executed, and a threat alert signal may be transmitted if appropriate based on the set of current feature vectors and the at least one decision boundary.
Abstract:
A generator protection device is provided. The generator protection device includes a safety factor estimation module configured to estimate a safety factor as a function of a terminal voltage (VS) of a source-end generator, and a swing center voltage (SCV) between the source-end generator and a receiving-end generator. The system further includes a comparison module configured to compare the estimated safety factor with a defined safety threshold limit, and a decision module configured to trigger an alarm or a generator circuit breaker trip action or both, based on the comparison between the estimated safety factor and the defined safety threshold limit.