Abstract:
A method for non-invasive treatment of cardiac arrhythmias is provided. The method includes acquiring body surface electrical signals at locations on a body surface of a living being from electrodes placed on locations of the body surface, reconstructing three-dimensional heart and torso anatomical models of the living being from an imaging scan, and calculating an electrical activity a throughout three-dimensional volume of the heart by electrocardiogram inverse problem solving based at least in part on the acquired body surface electrical signals and the reconstructed three-dimensional heart and torso anatomical models. The method also includes identifying at least one location of at least one site of origin of a cardiac arrhythmia according to the calculated electrical activity within the heart, and delivering focused energy to the identified at least one location of the at least one site of origin of the cardiac arrhythmia.
Abstract:
A method for combustion tuning, comprises collecting exhaust parameters indicating combustion status of a boiler by a sensor array; determining whether the exhaust parameters of the boiler match a preset optimization target; and optimizing combustion, if the exhaust parameters do not match the preset optimization target by selecting a model from a model repository based on a current boiler condition, wherein the model corresponds to a relationship between model input variables and the exhaust parameters; determining at least one optimized model input variable of the boiler for realizing the optimization target, based on the selected model; and adjusting actuators of the boiler according to the optimized model input variable.
Abstract:
A fuel cell system is disclosed, which includes a fuel cell stack coupled to a load for providing power, a gas delivery system coupled to the fuel cell stack for providing fuel and oxygen to the fuel cell stack and a control system. The control system includes a forward controller for generating a desired control instruction signal based on a command from the load, and a correction controller for generating a control correction signal to avoid violating operational constraints of the fuel cell stack based on at least one measured signal from the fuel cell system. The control system generates a control signal based on the desired control instruction signal and the control correction signal, and controls the gas delivery system based on the generated control signal to ensure the fuel cell stack is operated within safe operating limits. A method for controlling the fuel cell system is also disclosed.