Abstract:
A laser apparatus includes: a laser oscillator including a wavelength adjuster and configured to output pulse laser light having a center wavelength adjusted by the wavelength adjuster; a spectrum monitor configured to generate data on a spectrum of the pulse laser light; and a processor configured to control the wavelength adjuster in such a way that the center wavelength of the pulse laser light changes in accordance with a target wavelength that periodically changes to each of multiple values including first and second wavelengths, calculate a first spectral linewidth from data on spectra of multiple pulses each having the first wavelength as the target wavelength, and calculate a second spectral linewidth from data on spectra of multiple pulses each having the second wavelength as the target wavelength.
Abstract:
An extreme ultraviolet light generation apparatus may include a chamber containing a plasma generation region irradiated by a pulse laser beam from a laser apparatus, a target supply device configured to supply a plurality of targets consecutively to the plasma generation region in the chamber, a target detection unit configured to detect a target outputted from the target supply device, and a laser controller configured to control the laser apparatus; the laser controller generating a light emission trigger instructing a laser device included in the laser apparatus to emit a pulse laser beam, and outputting the generated light emission trigger to the laser apparatus, in accordance with a detection signal from the target detection unit; and the laser controller adjusting generation of the light emission trigger outputted consecutively to the laser apparatus so that a time interval of the light emission trigger is within a predetermined range.
Abstract:
An extreme ultraviolet light generation apparatus may include a chamber containing a plasma generation region irradiated by a pulse laser beam from a laser apparatus, a target supply device configured to supply a plurality of targets consecutively to the plasma generation region in the chamber, a target detection unit configured to detect a target outputted from the target supply device, and a laser controller configured to control the laser apparatus; the laser controller generating a light emission trigger instructing a laser device included in the laser apparatus to emit a pulse laser beam, and outputting the generated light emission trigger to the laser apparatus, in accordance with a detection signal from the target detection unit; and the laser controller adjusting generation of the light emission trigger outputted consecutively to the laser apparatus so that a time interval of the light emission trigger is within a predetermined range.
Abstract:
An extreme ultraviolet light generation system may include an optical device configured to cause an optical path of a pulse laser beam to approximately match one of a first optical path in which the pulse laser beam is focused at a plasma generation region and a second optical path in which the pulse laser beam passes outside the plasma generation region, and a control unit configured to output a control signal to the optical device so that the optical device sets the optical path of the pulse laser beam to the second optical path from when a predetermined time starts to when the number of pulses contained in a timing signal reaches a predetermined value and sets the optical path of the pulse laser beam to the first optical path from when the number of pulses reaches the predetermined value to when the predetermined time ends.