Abstract:
A swallowable in-vivo device contains a movement detection unit that includes a movement sensing unit, a frequency analyzing unit (FAU) and a time analyzing unit (TAU). The movement sensing unit senses movements of the in-vivo device relative to a non-stationary three-dimensional reference frame, and outputs a movement signal. The frequency analyzing unit may analyze the movement signal spectrally to detect a potential command-invoking movement, and the time analyzing unit may analyze the potential CIM temporally, possibly in conjunction with a series of other movement events, to determine whether the potential CIM is a genuine CIM. If the potential CIM is determined to be a genuine CIM, the in-vivo device may execute a predetermined command associated with the CIM. Otherwise, the in-vivo device may refrain from executing a CIM-related command. A PCB including the movement detection unit and a processor for processing their output is provided for the vivo sensing device.
Abstract:
A wearable sensor belt used as a reference frame for determining a location of an in-vivo device in the gastrointestinal (GI) tract, the belt including N magnetic field generating coils and M magnetic field sensors configured for dynamic calibration of the belt's geometry in order to accommodate for dynamic changes in the shape and/or size of the belt from one subject to another, and for dynamic changes in the shape and/or size of the belt as a result of changes in a subject's posture. A method for localizing an in-vivo device swallowed by a subject using a sensor belt is also described.
Abstract:
A control circuit for controlling a state of a switching circuit may include a first unit to sense and interpret a wireless signal or physical parameter as an “on” signal to transition the switching circuit to the “on” state, or as an “off” signal to transition the switching circuit to the “off” state, and to transfer a first digital signal or logic value and/or a second digital signal or logic value, which may respectively or combinatorially represent the “on” signal or the “off” signal, to a second unit via a first output and/or a second output of the first unit, respectively. The second unit may force a control input of the switching circuit to a logic value which is a function of the first digital signal or value and/or second digital signal or value and congruent with the state to which the switching circuit is to be transitioned.