Abstract:
The present invention provides a photovoltaic device, such as, a solar cell, having a substrate and an absorber layer disposed on the substrate. The absorber layer includes a doped or undoped composition represented by the formula: Cu1-yIn1-xGaxSe2-zSz wherein 0≦x≦1; 0≦y≦0.15 and 0≦z≦2; wherein the absorber layer is formed by a solution-based deposition process which includes the steps of contacting hydrazine and a source of Cu, a source of In, a source of Ga, a source of Se, and optionally a source of S, and further optionally a source of a dopant, under conditions sufficient to produce a homogeneous solution; coating the solution on the substrate to produce a coated substrate; and heating the coated substrate to produce the photovoltaic device. A photovoltaic device and a process for making same based on a hydrazinium-based chalcogenide precursor are also provided.
Abstract:
A method for forming a photovoltaic device includes forming a photovoltaic absorption stack on a substrate including one or more of I-III-VI2 and I2-II-IV-VI4 semiconductor material. A transparent conductive contact layer is deposited on the photovoltaic absorption stack at a temperature less than 200 degrees Celsius. The transparent conductive contact layer has a thickness of about one micron and is formed on a front light-receiving surface. The surface includes pyramidal structures due to an as deposited thickness. The transparent conductive contact layer is wet etched to further roughen the front light-receiving surface to reduce reflectance.