Abstract:
A method of laser welding aluminum alloy workpieces with dual laser beams arranged in a cross-beam orientation is disclosed. The method comprises directing dual laser beams, which include a first laser beam and a second laser beam, at and along a weld seam established between the aluminum alloy workpieces together with a filler wire. The first laser beam includes a first longitudinal axis and the second laser beam includes a second longitudinal axis. When arranged in the cross-beam orientation, a plane that intersects the first longitudinal axis and the second longitudinal axis of the first and second laser beams, respectively, forms a line where it meets the aluminum alloy workpieces that is oriented transverse to the weld seam.
Abstract:
A method of laser welding aluminum alloy workpieces with dual laser beams arranged in a cross-beam orientation is disclosed. The method comprises directing dual laser beams, which include a first laser beam and a second laser beam, at and along a weld seam established between the aluminum alloy workpieces together with a filler wire. The first laser beam includes a first longitudinal axis and the second laser beam includes a second longitudinal axis. When arranged in the cross-beam orientation, a plane that intersects the first longitudinal axis and the second longitudinal axis of the first and second laser beams, respectively, forms a line where it meets the aluminum alloy workpieces that is oriented transverse to the weld seam.
Abstract:
A system and method for stabilizing the molten pool in a laser welding operation by suppressing a laser-induced plume which occurs when zinc coated steels are laser welded. The plume is a result of vaporization of zinc, and the zinc vapor in the plume disturbs the molten pool and causes blowholes, spattering and porosity. The stabilization is achieved by applying a gas such as air through a nozzle to the weld area, where the gas has sufficient velocity and flow rate to blow the zinc vapor away from the molten pool. Dramatically improved weld quality results have been demonstrated. Configuration parameters which yield optimum results—including gas flow rate and velocity, and nozzle position and orientation relative to the laser impingement location on the steel—are disclosed.