Abstract:
A system includes a cylinder event module that determines an air-per-cylinder value for a cylinder intake event or a cylinder non-intake event of a current cylinder based on a mass air flow signal and an engine speed signal. A status module generates a status signal indicating whether the current cylinder is activated. A deactivation module, based on the status signal, determines a current accumulated air mass in an intake manifold of an engine: for air received by the intake manifold since a last cylinder intake event of an activated cylinder and prior to one or more consecutive cylinder non-intake events of one or more deactivated cylinders; and based on a previous accumulated air mass in the intake manifold and the air-per-cylinder value. An activation module, based on the status signal, determines an air mass value for the current cylinder based on the air-per-cylinder value and the current accumulated air mass.
Abstract:
A system includes a parameter module that determines at least one of a position of a throttle and a load of an engine. A cylinder status module generates a status signal indicating an activation status of each cylinder of the engine. The cylinder status module determines whether one or more of the cylinders are activated. A first pressure prediction module, when all of the cylinders are activated, predicts first intake port pressures for the cylinders of the engine according to a first model and based on the at least one of the position of the throttle and the engine load. A second pressure prediction module, when one or more of the cylinders is deactivated, predicts second intake port pressures for the deactivated cylinders according to a second model and based on the status signal and the at least one of the position of the throttle and the engine load.
Abstract:
A cylinder control system of a vehicle includes a cylinder control module and an air per cylinder (APC) prediction module. The cylinder control module determines a desired cylinder activation/deactivation sequence. The cylinder control module also activates and deactivates valves of cylinders of an engine based on the desired cylinder activation/deactivation sequence. The APC prediction module predicts an amount of air that will be trapped within a next activated cylinder in a firing order of the cylinders based on a cylinder activation/deactivation sequence of the last Q cylinders in the firing order. Q is an integer greater than one.