Abstract:
An electrolyte composition for use in a battery system including a silicon-based negative electrode having active material particles is provided. The electrolyte composition includes a polar solvent selected from the group consisting of ethylene carbonate, propylene carbonate, sulfolane, γ-butyrolactone, and combinations thereof and at least one lithium salt dissolved in the polar solvent at a concentration of at least 2 moles of the at least one lithium salt per 1 liter of the polar solvent. The at least one lithium salt and the polar solvent add dipoles to the electrolyte composition configured for reducing an electric field present at a surface of each of the active material particles in the silicon-based negative electrode of the battery system.
Abstract:
A method of forming an electrode includes attaching a tab to a collector to form a pre-tabbed current collector; disposing the pre-tabbed current collector onto a non-stick substrate to form a workpiece; and casting a slurry onto the workpiece to form a film. The slurry includes an active material component, one or more carbon additives, and at least one of a filamentary copper additive and a dendritic copper additive. The method includes drying the film at a first temperature to form a dried film; curing the dried film under pressure at a second higher temperature to form a cured film; removing the cured film from the non-stick substrate to form a precursor film; and carbonizing and annealing the precursor film at a third higher temperature. Carbonizing forms a three-dimensional electrically-conductive network and annealing forms a second contiguous network of copper connected to the active material component to form the electrode.
Abstract:
Electrochemical cells that cycle lithium ions and methods for suppressing or minimizing dendrite formation are provided. The electrochemical cells include a positive electrode, a negative electrode, and a separator sandwiched therebetween. The positive and negative electrodes and separator may each include an electrolyte system comprising one or more lithium salts, one or more solvents, and one or more complexing agents. The one or more complexing agents binds to metal contaminants found within the electrochemical cell to form metal ion complex compounds that minimize or suppress formation of dendrite protrusions on the negative electrode at least by increasing the horizontal area (e.g., decreasing the height) of any dendrite formation.
Abstract:
One example of a lithium ion battery component is a lithium ion battery separator including a planar microporous polymer membrane and a chelating agent bonded to the planar microporous polymer membrane through a linking group. The chelating agent is bonded such that the permanent dipole moment of the chelating agent is oriented perpendicular to the plane of the planar microporous polymer membrane.
Abstract:
In a lithium ion battery, one or more chelating agents may be attached to a microporous polymer separator for placement between a negative electrode and a positive electrode or to a polymer binder material used to construct the negative electrode, the positive electrode, or both. The chelating agents may comprise, for example, at least one of a crown ether, a crown ether, a podand, a lariat ether, a calixarene, a calixcrown, or mixtures thereof. The chelating agents can help improve the useful life of the lithium ion battery by complexing with unwanted metal cations that may become present in the battery's electrolyte solution while, at the same time, not significantly interfering with the movement of lithium ions between the negative and positive electrodes.
Abstract:
An electrode heat treatment device and associated method for fabricating an electrode are described, and include forming a workpiece, including coating a current collector with a slurry. The workpiece is placed on a first spool, and the first spool including the workpiece is placed in a sealable chamber, wherein the sealable chamber includes the first spool, a heat exchange work space, and a second spool. An inert environment is created in the sealable chamber. The workpiece is subjected to a multi-step continuous heat treatment operation in the inert environment, wherein the multi-step continuous heat treatment operation includes continuously transferring the workpiece through the heat exchange work space between the first spool and the second spool and controlling the heat exchange work space to an elevated temperature.
Abstract:
Methods for fabricating electrodes include coating a current collector with a slurry to form a coated current collector. The slurry includes a dry fraction, including silicon particles, polymeric binders, and one or more types of naturally occurring carbonaceous filaments, and one or more solvents. The coated current collector is heat treated to produce the electrode having a layer of silicon-based host material. The one or more naturally occurring carbonaceous filaments can include animal fibers, chitin, alginate, cellulose, keratin, and chitosan, and can have an average length of 1 μm to 50 μm and an average diameter of 1 nm to 500 nm. The dry fraction can include 5 wt. % to 95 wt. % silicon particles, 0.1 wt. % to 15 wt. % polymeric binders, and 1 wt. % to 20 wt. % naturally occurring carbonaceous filaments. The method can include assembling a battery cell by disposing the electrode and a positive electrode in electrolyte.
Abstract:
Electrochemical cells that cycle lithium ions and methods for suppressing or minimizing dendrite formation are provided. The electrochemical cells include a positive electrode, a negative electrode, and a separator disposed therebetween. At least one transition metal ion-trapping moiety, including one or more polymers functionalized with one or more trapping groups, may be included within the electrochemical cell as a coating, pore filler, substitute pendant group, or binder. The one or more trapping groups may be selected from the group consisting of: crown ethers, siderophores, bactins, ortho-phenanthroline, iminodiacetic acid dilithium salt, oxalates malonates, fumarates, succinates, itaconates, phosphonates, and combinations thereof, and may bind to metal ions found within the electrochemical cell to minimize or suppress formation of dendrite protrusions on the negative electrode.
Abstract:
Methods of scavenging acid in a lithium-ion electrochemical cell are provided. An electrolyte solution that contains an acid or is capable of forming the acid is contacted with a polymer comprising a nitrogen-containing acid-trapping moiety selected from the group consisting of: an amine group, a pyridine group, and combinations thereof. The nitrogen-containing acid-trapping moiety scavenges acidic species present in the electrolyte solution by participating in a Lewis acid-base neutralization reaction. The electrolyte solution comprises a lithium salt and one or more solvents and is contained in the electrochemical cell that further comprises a first electrode, a second electrode having an opposite polarity from the first electrode, and a porous separator. Lithium ions can be cycled through the separator and electrolyte solution from the first electrode to the second electrode, where acid generated during the cycling is scavenged by the polymer comprising a nitrogen-containing acid-trapping moiety.
Abstract:
A lithium ion battery includes a positive and a negative electrode, and a nanoporous or microporous polymer separator soaked in electrolyte solution and disposed between the electrodes. At least two different chelating agents are included and selected to complex with: i) two or more different transition metal ions; ii) a transition metal ion in two or more different oxidation states; or iii) both i) and ii). The at least two different selected chelating agents are to complex with transition metal ions in a manner sufficient to not affect movement of lithium ions across the separator during operation of the battery. The chelating agents are: dissolved or dispersed in the electrolyte solution; grafted onto the polymer of the separator; attached to the binder material of the negative and/or positive electrode; disposed within pores of the separator; coated on a surface of the separator; and/or coated on a surface of an electrode.