Abstract:
A multi-channel seat mounting wire retention bracket for a vehicle subjectable to an external force event and including a body structure and a seat having a seat mounting wire includes a body structure attachment portion and a wire retention portion. The body structure attachment portion is attachable to the body structure. The wire retention portion is configured to form a wire installation channel and a wire catch channel. The wire installation channel is configured to receive and retain the seat mounting wire when the seat is installed in the vehicle and to allow removal of the seat mounting wire when the seat is removed from the vehicle. The wire catch channel is configured to receive and retain the seat mounting wire during the external force event.
Abstract:
A tether hook bracket for a vehicle subjectable to an external force event, followed by a rebound event, and having a body structure and a child seat connectable to the body structure via a tether having a tether hook includes a body structure attachment portion, a tether hook connection portion, and a tether hook rebound blocker portion. The body structure attachment portion is configured to be attachable to the body structure. The tether hook connection portion is configured to receive the tether hook, such that the tether hook is connected to the tether hook bracket. The tether hook rebound blocker portion is disposed between the body structure attachment portion and the tether hook connection portion and is configured to maintain the connection of the tether hook to the tether hook bracket when the vehicle is subjected to the rebound event.
Abstract:
An energy management system for a vehicle includes a load-bearing component operatively positioned in a wheel cavity rearward of a tire and wheel assembly in the wheel cavity. The load-bearing component is configured to limit movement of the tire and wheel assembly in the wheel cavity under a load applied to the vehicle forward of the tire and wheel assembly and offset from a longitudinal centerline of the vehicle.
Abstract:
An energy management system for a vehicle includes a load-bearing component operatively positioned in a wheel cavity rearward of a tire and wheel assembly in the wheel cavity. The load-bearing component is configured to limit movement of the tire and wheel assembly in the wheel cavity under a load applied to the vehicle forward of the tire and wheel assembly and offset from a longitudinal centerline of the vehicle.
Abstract:
An energy management system for a vehicle limits movement of a tire and wheel assembly in a wheel cavity. The vehicle has a wheel well structure that defines the wheel cavity. The energy management system includes a tether attached to the tire and wheel assembly. The tether is configured to limit movement of the tire and wheel assembly within the wheel cavity under a predetermined load that is applied to the vehicle forward of the tire and wheel assembly and offset from a longitudinal centerline of the vehicle.
Abstract:
An energy management system for a vehicle limits movement of a tire and wheel assembly in a wheel cavity. The vehicle has a wheel well structure that defines the wheel cavity. The energy management system includes a tether attached to the tire and wheel assembly. The tether is configured to limit movement of the tire and wheel assembly within the wheel cavity under a predetermined load that is applied to the vehicle forward of the tire and wheel assembly and offset from a longitudinal centerline of the vehicle.
Abstract:
A tether hook bracket for a vehicle subjectable to an external force event, followed by a rebound event, and having a body structure and a child seat connectable to the body structure via a tether having a tether hook includes a body structure attachment portion, a tether hook connection portion, and a tether hook rebound blocker portion. The body structure attachment portion is configured to be attachable to the body structure. The tether hook connection portion is configured to receive the tether hook, such that the tether hook is connected to the tether hook bracket. The tether hook rebound blocker portion is disposed between the body structure attachment portion and the tether hook connection portion and is configured to maintain the connection of the tether hook to the tether hook bracket when the vehicle is subjected to the rebound event.