SELECTIVE CATALYTIC REDUCTION STEADY STATE AMMONIA SLIP AND REDUCTANT BREAKTHROUGH DETECTION

    公开(公告)号:US20190010851A1

    公开(公告)日:2019-01-10

    申请号:US15643987

    申请日:2017-07-07

    Abstract: Technical solutions are described for an emissions control system for a motor vehicle including an internal combustion engine. An example emissions control system for treating exhaust gas in a motor vehicle including an internal combustion engine. For example, the emissions control system includes a selective catalytic reduction (SCR) device, an NOx sensor, and a controller that is configured to detect a NH3 slip of the SCR device. The controller detects the NH3 slip by modulating an engine out NOx from an engine, demodulating the engine out NOx from the engine to original state, and measuring NOx upstream and downstream from the SCR device after the modulation. Further, the controller determines the NH3 slip by comparing gradients in the NOx measurement with one or more predetermined thresholds.

    METHODS FOR CONTROLLING SELECTIVE CATALYTIC REDUCTION SYSTEMS

    公开(公告)号:US20190178131A1

    公开(公告)日:2019-06-13

    申请号:US15838823

    申请日:2017-12-12

    Abstract: A selective catalytic reduction device (SCR) system performs intrusive steady state dosing correction (SSDC) when a NOx error between a predicted and measured downstream NOx value exceeds a threshold. In SSDC, if NOx breakthrough or NH3 slip is detected above a SSDC threshold, a short term reductant dosing adaptation occurs. Optionally long term dosing adaptations occur if the magnitude of previous short term adaptations exceed a short term adaptation threshold. If SSDC is insufficiently improving SCR performance based on the number of intrusive events occurring within a period of time and the change in NOx error during the time period, a method includes modifying the SSDC protocol by one or more of increasing the duration of short term adaptations, decreasing the SSDC threshold, and reducing the short term adaptation threshold. The method further includes subsequently inhibiting intrusive events from occurring.

    Methods for monitoring and modelling thermal characteristics of oxidation catalyst devices

    公开(公告)号:US10323561B2

    公开(公告)日:2019-06-18

    申请号:US15491000

    申请日:2017-04-19

    Abstract: Methods for monitoring thermal characteristics of oxidation catalyst (OC) catalytic composition(s) (CC) are provided, and comprise communicating exhaust gas to the OC, and determining a temperature change of the CC for the time frame based on a plurality of heat sources including heat imparted to the CC from exhaust gas enthalpy, heat imparted to the CC via oxidation of HC and/or CO in exhaust gas, heat imparted to the CC via water present in the exhaust gas condensing on the CC or heat removed from the CC via water evaporating from the CC, and optionally heat exchanged between the CC and the ambient environment. Heat imparted to the CC via water condensing on the CC can be determined using an increasing relative humidity proximate the CC, and heat removed from the CC via water evaporating from the CC can be determined using a decreasing relative humidity proximate the CC.

Patent Agency Ranking