Abstract:
An apparatus and method to detect a short circuit event in a fuel cell system of a vehicle. The detection relies on three existing sensors within the fuel cell system, two current sensors and a voltage sensor. A controller executes an algorithm with a set of thresholds stored in a computer readable medium to monitor the sensors to sense if any of the threshold values are crossed. If crossed, the controller may take remedial action to stop the short circuit and/or prevent damage to the fuel cell system. A mode manager may work with the controller to determine when the operating conditions of the fuel cell system are ideal for sensing for a low voltage condition indicative of a short circuit event. A pair of integrators may be electrically coupled to an alternating current sensor to differentiate a short circuit event from a high frequency resistance current.
Abstract:
A power converter includes positive and negative input lines and an input capacitor coupled across the input lines. The power converter also includes a switch coupled across the input lines that includes a control contact and an additional contact. The power converter also includes switch controller coupled to the control contact and that includes positive and negative input connections. The power converter also includes a contactor diagnostic supply interface coupled between the positive input connection and the additional contact.
Abstract:
A coolant conductivity method and apparatus used to determine when a coolant, circulating through a vehicle's coolant system, starts to conduct electrical current and loses its electrical isolation properties. The system includes a battery monitor controller senses one or more isolation resistances placed throughout a fuel cell system and is programmed to run an isolation algorithm. The isolation algorithm opens and closes contactors in a specific order, measures the resistance of the one or more isolation resistances and calculates a coolant conductivity value. The system will indicate when the coolant needs to be replaced.
Abstract:
An apparatus and method to detect a short circuit event in a fuel cell system of a vehicle. The detection relies on three existing sensors within the fuel cell system, two current sensors and a voltage sensor. A controller executes an algorithm with a set of thresholds stored in a computer readable medium to monitor the sensors to sense if any of the threshold values are crossed. If crossed, the controller may take remedial action to stop the short circuit and/or prevent damage to the fuel cell system. A mode manager may work with the controller to determine when the operating conditions of the fuel cell system are ideal for sensing for a low voltage condition indicative of a short circuit event. A pair of integrators may be electrically coupled to an alternating current sensor to differentiate a short circuit event from a high frequency resistance current.
Abstract:
A power converter includes positive and negative input lines and an input capacitor coupled across the input lines. The power converter also includes a switch coupled across the input lines that includes a control contact and an additional contact. The power converter also includes switch controller coupled to the control contact and that includes positive and negative input connections. The power converter also includes a contactor diagnostic supply interface coupled between the positive input connection and the additional contact.
Abstract:
A method of operating a fuel cell stack that powers a vehicle includes determining when the vehicle is in a non-moving state, calculating an O2 concentration over time of an assumed enclosed space while the vehicle is in the non-moving state, establishing a set of O2 concentration concern levels that includes a first O2 concentration concern level being less than a standard atmospheric O2 concentration and a second O2 concentration concern level being less than the first O2 concentration concern level, comparing the O2 concentration of the assumed enclosed space over time with the set of O2 concentration concern levels, and operating the fuel cell stack without restriction when the vehicle is in the non-moving state so long as the O2 concentration of the assumed enclosed space remains greater than the first O2 concentration concern level.
Abstract:
A system and method for monitoring the conductivity of a cooling fluid flowing in a fuel cell system on a vehicle including a chassis. The fuel cell system includes a fuel cell stack electrically coupled to a stack bus and a battery electrically coupled to a propulsion bus. The method includes operating the fuel cell system, measuring a first isolation resistance at the first power level, measuring a first stack voltage, and measuring a first battery voltage. The method also includes operating the fuel cell system at a second power level, and measuring a second isolation resistance, measuring a second stack voltage, and measuring a second battery voltage. The method calculates a stack coolant resistance using the first and second isolation resistances, the first and second stack voltages, and the first and second battery voltages, which is then used to calculate the cooling fluid conductivity.
Abstract:
A coolant conductivity method and apparatus used to determine when a coolant, circulating through a vehicle's coolant system, starts to conduct electrical current and loses its electrical isolation properties. The system includes a battery monitor controller senses one or more isolation resistances placed throughout a fuel cell system and is programmed to run an isolation algorithm. The isolation algorithm opens and closes contactors in a specific order, measures the resistance of the one or more isolation resistances and calculates a coolant conductivity value. The system will indicate when the coolant needs to be replaced.
Abstract:
A method of operating a fuel cell stack that powers a vehicle includes determining when the vehicle is in a non-moving state, calculating an O2 concentration over time of an assumed enclosed space while the vehicle is in the non-moving state, establishing a set of O2 concentration concern levels that includes a first O2 concentration concern level being less than a standard atmospheric O2 concentration and a second O2 concentration concern level being less than the first O2 concentration concern level, comparing the O2 concentration of the assumed enclosed space over time with the set of O2 concentration concern levels, and operating the fuel cell stack without restriction when the vehicle is in the non-moving state so long as the O2 concentration of the assumed enclosed space remains greater than the first O2 concentration concern level.