Methods for determining and characterizing soft shorts in electrochemical cells

    公开(公告)号:US10677849B2

    公开(公告)日:2020-06-09

    申请号:US15846774

    申请日:2017-12-19

    Abstract: An electrochemical cell comprises an electrolyte capable of facilitating ion transfer between an anode and a cathode. A method for identifying and/or characterizing a soft short in an electrochemical cell comprises cooling the electrochemical cell to an observation temperature at which inter-electrolyte ion migration is substantially inhibited, observing the open circuit voltage (OCV) of the electrochemical cell at the observation temperature for a period of time, and determining the presence of a soft short in the electrochemical cell if the OCV reaches a minimum threshold voltage prior to the expiration of the period of time. The method can optionally further include generating an impedance spectrum for the cell via potentiostatic electrochemical impedance spectroscopy (PETS) at or below the observation temperature, and defining the cell leakage resistance as the maximum impedance limit of the impedance spectrum. The observation temperature can comprise the glass transition temperature of the electrolyte.

    METHODS FOR DETERMINING AND CHARACTERIZING SOFT SHORTS IN ELECTROCHEMICAL CELLS

    公开(公告)号:US20190187216A1

    公开(公告)日:2019-06-20

    申请号:US15846774

    申请日:2017-12-19

    Abstract: An electrochemical cell comprises an electrolyte capable of facilitating ion transfer between an anode and a cathode. A method for identifying and/or characterizing a soft short in an electrochemical cell comprises cooling the electrochemical cell to an observation temperature at which inter-electrolyte ion migration is substantially inhibited, observing the open circuit voltage (OCV) of the electrochemical cell at the observation temperature for a period of time, and determining the presence of a soft short in the electrochemical cell if the OCV reaches a minimum threshold voltage prior to the expiration of the period of time. The method can optionally further include generating an impedance spectrum for the cell via potentiostatic electrochemical impedance spectroscopy (PETS) at or below the observation temperature, and defining the cell leakage resistance as the maximum impedance limit of the impedance spectrum. The observation temperature can comprise the glass transition temperature of the electrolyte.

Patent Agency Ranking