Abstract:
A controller of a host system executes a method for detecting an external AC electrical device. While an AC charging inlet of the host system is electrically connected to the device via different vehicle-to-live (V2L) and jump-charge connections, the controller detects a control pilot voltage and a proximity voltage. When the control pilot voltage is 0V, the controller determines whether entry conditions are satisfied indicative of a desire to offload power from the host system to the device. When the entry conditions are satisfied, the proximity or control pilot voltage are modulated to generate a modulated voltage signal, which the controller compares to an expected voltage indicative of the device. Power is offloaded to the device when the modulated voltage signal matches the expected voltage.
Abstract:
Systems and methods for a fault protection are provided that can be implemented in a hybrid electric vehicle (HEV) to limit the magnitude of a current that flows when an AC-to-chassis fault (ACF) occurs between an AC connection and the chassis of the HEV. An electric machine having a winding, an inverter sub-module (ISM) having a first switch and a second switch, and fault protection elements (FPEs), coupled to the ISM, are provided. The winding is coupled to the ISM coupled via the AC connection. The FPEs can include, for example, first and second inductances. To limit the magnitude of the current, the current can be passed along a first current path that includes the second inductance when the first switch is closed, and can be passed along a second current path that includes the first inductance when the second switch is closed.
Abstract:
A number of variations may include a method which may include determining a temperature rise in an IGBT junction without the use of a temperature estimation or measurement device because determination may be made by first determining the power loss due to the conduction losses of the IGBT and power loss associated with switching the IGBT where these losses may be determined by utilizing the saturation voltage of the IGBT, IGBT PWM duty cycle, IGBT switching frequency, fundamental frequency along with a lookup table for the switching energies and the phase current going through the IGBT. The determined power loss may be multiplied by a measured, sensed or obtained thermal impedance from the IGBT junction. Finally, the determined temperature rise of the IGBT junction may be added to a measured, sensed or obtained temperature of the coolant in order to determine the absolute temperature of the IGBT junction.
Abstract:
A controller of a host system executes a method for detecting an external AC electrical device. While an AC charging inlet of the host system is electrically connected to the device via different vehicle-to-live (V2L) and jump-charge connections, the controller detects a control pilot voltage and a proximity voltage. When the control pilot voltage is 0V, the controller determines whether entry conditions are satisfied indicative of a desire to offload power from the host system to the device. When the entry conditions are satisfied, the proximity or control pilot voltage are modulated to generate a modulated voltage signal, which the controller compares to an expected voltage indicative of the device. Power is offloaded to the device when the modulated voltage signal matches the expected voltage.
Abstract:
A number of variations may include a method which may include determining a temperature rise in an IGBT junction without the use of a temperature estimation or measurement device because determination may be made by first determining the power loss due to the conduction losses of the IGBT and power loss associated with switching the IGBT where these losses may be determined by utilizing the saturation voltage of the IGBT, IGBT PWM duty cycle, IGBT switching frequency, fundamental frequency along with a lookup table for the switching energies and the phase current going through the IGBT. The determined power loss may be multiplied by a measured, sensed or obtained thermal impedance from the IGBT junction. Finally, the determined temperature rise of the IGBT junction may be added to a measured, sensed or obtained temperature of the coolant in order to determine the absolute temperature of the IGBT junction.