Abstract:
System and methods for balancing a vehicle battery system are presented. In certain embodiments, a method for balancing battery system having multiple battery sections may include receiving estimated states of charge of the battery sections. Based on the estimated states of charge, a determination may be made whether the battery sections have states of charge within one of plurality of regions included in a state of charge window. Based on the determination, one of a plurality of different balancing algorithms may be utilized to control transfer energy between the battery sections to balance the battery sections.
Abstract:
Methods and systems for adjusting the voltage limits of a battery. In some implementations, voltage data may be received from each of a plurality of battery sections of a vehicle battery. A voltage offset for the vehicle battery may be calculated using the voltage data. The voltage offset may be calculated by determining a difference between an average voltage taken from each of the plurality of battery sections and at least one of a minimum voltage of all of the battery cells and an average cell voltage from a battery section having the lowest average cell voltage. The voltage offset may be applied to dynamically adjust a voltage limit associated with the vehicle battery so as to prevent any of the battery cells in the vehicle battery from exceeding the voltage limit.
Abstract:
System and methods for determining battery system energy capability in a vehicle are presented. A voltage offset of a battery system may be determined based on comparison of an open circuit voltage of the battery system and a measured voltage. An estimated remaining pack energy may be determined based, at least in part, on the voltage offset. Similarly, an estimated total pack energy may be determined based, at least in part, on the voltage offset. An energy capability of the battery system may be determined based on the estimated remaining pack energy and the estimated total pack energy.
Abstract:
System and methods for identifying a weak subdivision in a battery system are presented. In certain embodiments, a system may include a battery pack that includes multiple subdivisions. A measurement system may be configured to determine multiple subdivision electrical parameters associated with the subdivisions. A battery control system may identify a weakest subdivision based one on or more calculated derivative ratios of a subdivision electrical parameter associated with one subdivision of the battery pack relative to a subdivision electrical parameter associated with another subdivision.
Abstract:
A method for dynamically adjusting a battery current limit in a system having a battery pack includes determining a battery pack current as a charge current flowing into or a discharge current flowing from the battery pack, and also calculating a time-windowed average current for each of the charge current, the discharge current, and an RMS current of the battery pack. The battery current limit may be dynamically adjusted when any or all of the calculated time-windowed averages exceeds a corresponding calibrated control threshold. The battery current limit is a window-specific current limit that is greater than the calibrated control threshold and less than a static/fixed current limit for the battery pack. A system includes the battery pack, a sensor operable for measuring a current inflow/outflow to/from the battery pack, and a controller programmed to dynamically adjust the battery current limit using the above method.
Abstract:
System and methods for estimating a capacity of a battery are presented. A measure of data skewness may be calculated from a battery system terminal voltage measurement. Inflection points in the data skewness of the terminal voltage measurement may align with transition points associated with a battery system. These transitions points may be associated with known SOCs determined from testing and/or characterization of the battery system. Using the detected transitions and associated SOCs and an indication of an accumulated charge provided to/from the battery between the transitions, an estimated capacity of the battery system may be determined.
Abstract:
System and methods for estimating a capacity of a battery are presented. In certain embodiments, charge and discharge current throughput data may be separately accumulated during operation of a battery system (e.g., during a charge sustaining operation of vehicle associated with the battery system). Charge and discharge voltage-based state of charge movement data may be further separately accumulated. Upon accumulating sufficient data, estimated charge and discharge battery capacities may be determined based on the accumulated data.
Abstract:
Systems and methods for improvements in battery state of charge accuracy, charge termination consistency, capacity estimation, and energy delivery consistency. More specifically, embodiments herein detail systems and methods using an algorithm to calculate the change in state of charge for a given voltage change (dSOC/dV) at a given temperature in a region around the present voltage measurement or estimation and to set a signal indicating when the measurement should not be used due to potential error.
Abstract:
Adaptive estimation techniques to create a battery state estimator to estimate power capabilities of the battery pack in a vehicle. The estimator adaptively updates circuit model parameters used to calculate the voltage states of the ECM of a battery pack. The adaptive estimation techniques may also be used to calculate a solid-state diffusion voltage effects within the battery pack. The adaptive estimator is used to increase robustness of the calculation to sensor noise, modeling error, and battery pack degradation.
Abstract:
A method for dynamically adjusting a battery current limit in a system having a battery pack includes determining a battery pack current as a charge current flowing into or a discharge current flowing from the battery pack, and also calculating a time-windowed average current for each of the charge current, the discharge current, and an RMS current of the battery pack. The battery current limit may be dynamically adjusted when any or all of the calculated time-windowed averages exceeds a corresponding calibrated control threshold. The battery current limit is a window-specific current limit that is greater than the calibrated control threshold and less than a static/fixed current limit for the battery pack. A system includes the battery pack, a sensor operable for measuring a current inflow/outflow to/from the battery pack, and a controller programmed to dynamically adjust the battery current limit using the above method.