Abstract:
A rotor casting includes a lamination stack and a cast structure including proximal and distal cast end rings respectively adjacent proximal and distal end faces of the lamination stack. Cast axial ribs are distributed radially on a peripheral surface of the lamination stack and extend between the proximal and distal cast end rings. Cast feed members extend axially from the proximal cast end ring and are respectively positioned radially between an adjacent pair of axial ribs. In one example, cast bar segments integral to the proximal and distal cast end rings are formed in axial slots of the lamination stack. In one example, a bar insert in each axial slot has insert ends that extend respectively from the proximal and distal end faces of the lamination stack and are fully encapsulated respectively in the proximal and distal cast end rings. A method of forming the rotor casting is provided.
Abstract:
A method including positioning an insert in a vertical mold including a first mold portion and a second mold portion; and casting a material including a metal around at least a portion of the insert.
Abstract:
A method for fabricating a rotor for an induction motor includes disposing a first flux material on a plurality of first exposed ends of a respective plurality of conductor bars of a rotor core. A second flux material is disposed on a first end face of the rotor core. A first portion of a conductive material is cast over the plurality of first exposed ends to form a first shorting end ring to electrically and mechanically connect the plurality of conductor bars.
Abstract:
A method including positioning an insert in a vertical mold including a first mold portion and a second mold portion; and casting a material including a metal around at least a portion of the insert.
Abstract:
One variation may include a method of making frictional surfaces for products having coulomb friction damping are provided. The method may include coating a metallic member with a coating including friction material. The metallic member may be pressure rolled to achieve a desired coating thickness and or the metallic member may be micro-waved to cure the coating.
Abstract:
A lamination pack for a motor and method of forming the lamination pack is provided. The method includes inserting a plurality of conductor bars into a plurality of rotor slots defined by a lamination stack such that opposing bar ends of the conductor bars extend from opposing end faces of the lamination stack, skewing the lamination stack and the conductor bars to a skew angle relative to a rotation axis of the lamination stack, and subsequently bending the bar ends of the conductor bars in opposing radial directions to a locking angle greater than the skew angle, to lock each of the conductor bars in its respective rotor slot. The bent bar ends exert a compressive axial locking force on the lamination stack to prevent axial and radial movement of the laminations in the lamination stack and to prevent axial movement of the conductor bars relative to the lamination stack.
Abstract:
A rotor casting includes a lamination stack and a cast structure including proximal and distal cast end rings respectively adjacent proximal and distal end faces of the lamination stack. Cast axial ribs are distributed radially on a peripheral surface of the lamination stack and extend between the proximal and distal cast end rings. Cast feed members extend axially from the proximal cast end ring and are respectively positioned radially between an adjacent pair of axial ribs. In one example, cast bar segments integral to the proximal and distal cast end rings are formed in axial slots of the lamination stack. In one example, a bar insert in each axial slot has insert ends that extend respectively from the proximal and distal end faces of the lamination stack and are fully encapsulated respectively in the proximal and distal cast end rings. A method of forming the rotor casting is provided.
Abstract:
A ferritically nitrocarburized rotational member of a vehicle brake is disclosed, including a rotational member having a friction surface configured for braking engagement with a corresponding friction material. A compound zone is disposed at the friction surface. An exposed surface of the compound zone is exposed to an atmosphere. The area of the exposed surface includes from about 0 percent to about 14 percent graphite.
Abstract:
A method for forming a casted component using a porous structure. The casted component may include a visible design feature formed in part by the casted component and in part by a body material also forming other parts of the component. The casted component may be a brake rotor having a mixed-material composite formed in part by the casted component and in part by a body material also forming other parts of the rotor. The porous structure can include a ceramic foam or a metal mesh.
Abstract:
A lamination pack for a motor and method of forming the lamination pack is provided. The method includes inserting a plurality of conductor bars into a plurality of rotor slots defined by a lamination stack such that opposing bar ends of the conductor bars extend from opposing end faces of the lamination stack, skewing the lamination stack and the conductor bars to a skew angle relative to a rotation axis of the lamination stack, and subsequently bending the bar ends of the conductor bars in opposing radial directions to a locking angle greater than the skew angle, to lock each of the conductor bars in its respective rotor slot. The bent bar ends exert a compressive axial locking force on the lamination stack to prevent axial and radial movement of the laminations in the lamination stack and to prevent axial movement of the conductor bars relative to the lamination stack.