Abstract:
A system and method of analyzing content of multilingual vehicle diagnostic records includes: determining a word window within a vehicle diagnostic record; identifying a pair or a tuple comprising parts, symptoms, or actions; generating a plurality of pairs or tuples comprising parts, symptoms, or actions; determining a frequency value for each pair or tuple; and comparing the determined frequency value with a predetermined threshold.
Abstract:
A method of automatic identifying linking relationships of requirements in a plurality of requirement documents. Terms in the plurality of requirement documents are identified. A part-of-speech tag is assigned to each term. Each identified term is selected as a focal term. Co-occurring terms within a predetermined distance of the selected focal term are determined. A linking relationship probability is calculated for each co-occurring term associated with the selected focal term. The selected focal terms and associated co-occurring terms between the plurality of requirement documents are compared. A degree of linking relationship is identified between two requirements as a function of a comparison between selected focal terms and the associated co-occurring terms between the plurality of requirement documents. An analysis report identifying the degree of linking relationships between two respective requirements is output.
Abstract:
A warranty database stores service repair verbatims. An ontology database that specifies relationships between service terms includes linking relationships between vehicle terminology and cluster categories. The ontology database is reconfigurable for allowing a user to add, delete, and modify contents within the ontology database. A verbatim extraction tool extracts service repair verbatims from the warranty database as function of user selected parameters and a user selected ontology. The user selected ontology is a subset of the ontology database. The service verbatims are segregated into a plurality of cluster categories as a function of the selected parameters and the user selected ontology. A report generating device selectively generated reports based on segregating service verbatims into a plurality of cluster categories. Each respective cluster category includes associated service repair verbatims that are selected as a function of the linking relationship of terms within the service verbatim and the user selected ontology.
Abstract:
A method of automatically developing an ontology for product function and failure mode documentation for an apparatus. The apparatus is identified. A function-flow model is generated for the identified apparatus for identifying a composite structure of the apparatus. Functions and failure modes associated with the identified apparatus are enumerated. Failure data is obtained from a plurality of heterogeneous data sources. A semantic similarity module is applied to the enumerated failures by comparing a plurality of documents between the data sources. The semantic similarity module bridges a variety of terms used in the heterogeneous data to describe a respective failure. Failures associated with the enumerated apparatus functions are extracted from the plurality of documents between heterogeneous data sources. A composite of related terminology is generated for each identified failure mode. A failure mode information document is generated utilizing the composite of related terminology for each identified failure mode.
Abstract:
A system and method for extracting a relevant phrase from text. The system and method may build a plurality of n-gram phrases using a seed from a seed list as a start, a middle, or an end of each n-gram phrase. The seed list may be directed to a specific vehicle system and each seed may indicate a symptom, part, or action to extract relevant phrases from vehicle information verbatims. The plurality of n-gram phrases may be filtered to obtain one or more relevant phrases. The filtering process may include calculating an external relevance factor, an internal relevance factor, or a context pattern relevance factor.
Abstract:
A system and method for extracting a relevant phrase from text. The system and method may build a plurality of n-gram phrases using a seed from a seed list as a start, a middle, or an end of each n-gram phrase. The seed list may be directed to a specific vehicle system and each seed may indicate a symptom, part, or action to extract relevant phrases from vehicle information verbatims. The plurality of n-gram phrases may be filtered to obtain one or more relevant phrases. The filtering process may include calculating an external relevance factor, an internal relevance factor, or a context pattern relevance factor.