Abstract:
A controller area network (CAN) has a plurality of CAN elements including a communication bus and controllers. A method for monitoring the CAN includes identifying each of the controllers as one of an active controller and an inactive controller. A fault-active controller isolation process is executed to detect and isolate presence of a fault-active controller. A fault isolation process can be executed to detect and isolate presence of one of a wire open fault, a wire short fault and a controller fault when one of the controllers is identified as an inactive controller. Presence of a fault associated with a persistent bus disturbance in the CAN is detected when a bus error count is greater than a predetermined threshold continuously for a predetermined period of time.
Abstract:
A controller area network (CAN) includes a CAN bus having a CAN-H wire, a CAN-L wire, and a pair of CAN bus terminators located at opposite ends of the CAN bus. The CAN further includes a plurality of nodes including controllers wherein at least one of the controllers is a monitoring controller. The monitoring controller includes a CAN monitoring routine for detecting a wire short fault in the CAN bus and its location.
Abstract:
Methods and systems are provided for vehicular communications. The systems include a server and a controller in a vehicle. The controller is configured to receive data from vehicular components and transmit the data to the remote server. In a normal mode, the data is transmitted in accordance with a normal frequency of events, while in an abnormal mode, the data is transmitted in accordance with an abnormal frequency of events. The abnormal frequency is different from the normal frequency. The abnormal mode is set in response to an event trigger denoting a fault of at least one component.
Abstract:
An internal combustion engine employs a starting system. A method for evaluating the starting system includes determining a cranking resistance ratio between a starter and a battery of the starting system during engine cranking. The cranking resistance ratio is normalized based upon an operating temperature of the starting system, and the starting system is evaluated based upon the normalized cranking resistance ratio.
Abstract:
A method for monitoring controller area network (CAN) on a mobile system includes identifying links and associated nodes between all the nodes of the CAN, and ranking all the links according to their order of connection to the monitoring controller, including assigning lower ranks to ones of the links proximal to the monitoring controller and assigning higher ranks to ones of the links distal to the monitoring controller. For each of said links, the associated node distal to the monitor is identified. The on-board monitoring controller determines a fault signature for each of the links starting with the link having the highest ranking, said fault signature comprising identified ones of the associated nodes distal to the monitor for each of the corresponding links.
Abstract:
A distributed vehicle health management system includes a vehicle-based diagnostic processor executing diagnostic routines in a vehicle. The diagnostic routines generate diagnostic data. A processor-based device executes advanced vehicle health management routines. The processor-based device determines a state of health of a component as a function of the diagnostic data. A telematics device communicates at least one of state of health data and diagnostic data from the vehicle. A remote entity disposed remotely from the vehicle. The remote entity receives data via the telematics device, the data being a selective subset of data output from at least one of the vehicle-based processor and processor-based device. The remote entity executes calibration routines as a function of the data received by the vehicle for calibrating at least one of the diagnostic routines and health management routines.
Abstract:
A controller area network (CAN) has a plurality of CAN elements including a communication bus and a plurality of controllers. A method for monitoring the CAN includes detecting occurrences of a first short-lived fault and a second short-lived fault within a predefined time window. A first fault set including at least one inactive controller associated with the first short-lived fault and a second fault set including at least one inactive controller associated with the second short-lived fault are identified. An intermittent fault is located in the CAN based upon the first and second fault sets.