Abstract:
A method for estimating lateral force includes receiving vehicle data. The vehicle includes a plurality of tires. The method further includes using a bicycle model to determine first lateral forces at each of the plurality of tires of the vehicle, using a double-track model to determine second lateral forces at each of the plurality of tires of the vehicle, fusing the first lateral forces determined using the bicycle model and the second lateral forces using the double-track model to determine third lateral forces at each of the plurality of tires of the vehicle, and controlling an actuator of the vehicle using the third lateral forces at each of the plurality of tires of the vehicle.
Abstract:
A system, for use at a vehicle to estimate vehicle roll angle and road bank angle, in real time and generally simultaneously. The system includes a sensor configured to measure vehicle roll rate, a processor; and a computer-readable medium. The medium includes instructions that, when executed by the processor, cause the processor to perform operations comprising estimating, using an observer and the vehicle roll rate measured by the sensor, a vehicle roll rate. The operations also include estimating, using an observer and a measured vehicle roll rate, the vehicle roll angle, and estimating, based on the vehicle roll rate estimated and the vehicle roll angle estimated, the road bank angle.
Abstract:
Methods and systems are provided for controlling an autonomous vehicle. In one embodiment, a method includes: A method of controlling an autonomous vehicle, comprising: receiving, by a processor, a first set of data obtained from an inertial measurement unit of the vehicle; receiving, by the processor, a second set of data obtained from a global positioning system of the vehicle; receiving, by the processor, a third set of data obtained from a camera of the vehicle; determining, by the processor, at least two vehicle states relative to markings of a lane by processing the first set of data, the second set of data, and the third set of data as measurement with an extended Kalman filter; and controlling, by the processor, the vehicle based on the at least two vehicle states.
Abstract:
A method for estimation of a vehicle tire force includes: receiving, by a controller of a vehicle, a measured vehicle acceleration of the vehicle; receiving, by the controller, a measured wheel speed and a measured yaw rate of the vehicle; forming, by the controller, inertia matrices based on an inertia of rotating components of the vehicle; calculating torques at corners of the vehicle using the inertia matrices; estimating tire forces of the vehicle based on the measured vehicle acceleration, the measured wheel speed, and the inertia matrices; and controlling, by the controller, the vehicle, based on the plurality of estimated longitudinal and lateral tire forces.
Abstract:
A method of controlling an active aerodynamic system of a vehicle includes calculating a first spring force estimated value from at least one sensed vehicle handling characteristic, and a second spring force estimated value from a nominal spring characteristic curve. When a difference between the first and second spring force estimated values is equal to or greater than a spring threshold value, a nominal spring characteristic curve is adjusted to define an adjusted spring characteristic curve, and the active aerodynamic system is controlled using the adjusted spring characteristic curve. When the difference between the first and second spring force estimated values is equal to or greater than the spring threshold value, a signal may also be engaged to provide a service recommendation.
Abstract:
A method of controlling an active aerodynamic system of a vehicle includes calculating a first spring force estimated value from at least one sensed vehicle handling characteristic, and a second spring force estimated value from a nominal spring characteristic curve. When a difference between the first and second spring force estimated values is equal to or greater than a spring threshold value, a nominal spring characteristic curve is adjusted to define an adjusted spring characteristic curve, and the active aerodynamic system is controlled using the adjusted spring characteristic curve. When the difference between the first and second spring force estimated values is equal to or greater than the spring threshold value, a signal may also be engaged to provide a service recommendation.
Abstract:
A vehicle and a system and method of controlling the vehicle. The system includes a sensor and a processor. The sensor obtains a first estimate of a force on a tire of the vehicle based on dynamics of the vehicle. The processor is configured to obtain a second estimate of the force on the tire using a tire model, determine an estimate of a coefficient of friction between the tire and the road from the first estimate of the force and the second estimate of the force, and control the vehicle using the estimate of the coefficient of friction.
Abstract:
A reduced-order fail-safe inertial measurement unit system. A first inertial measurement unit device includes a plurality of accelerometers measuring linear accelerations and gyroscopes measuring angular velocities. A second inertial measurement unit device includes a reduced number of accelerometers and gyroscopes relative to the first inertial measurement unit device measuring at least two linear accelerations and at least one angular velocity. A processor receives acceleration data from the first and second inertial measurement units. The processor detects faulty data measurements from the first inertial measurement unit. The processor supplements the faulty data measurements of the first inertial measurement unit with transformed data generated as a function of the measurement data from the second inertial measurement unit. The processor applies predetermined transformation solutions to transform the measurement data from the second inertial measurement unit into the transformed data. The processing unit provides the transformed data to the safety applications of the vehicle.
Abstract:
A system for use at a vehicle to estimate vehicle pitch angle and road grade angle, in real time and generally simultaneously. The system includes a sensor configured to measure vehicle pitch rate, a processor, and a computer-readable medium. The medium includes computer-executable instructions that, when executed by the processor, cause the processor to perform operations comprising estimating, using an observer and the vehicle pitch rate measured by the sensor, an estimated vehicle pitch rate. The operations further comprise estimating, using an observer and the measured vehicle pitch rate, the vehicle pitch angle, and estimating, based on the estimated vehicle pitch rate and the vehicle pitch angle estimated, the road grade angle.
Abstract:
A system, for use at a vehicle to estimate vehicle roll angle and road bank angle, in real time and generally simultaneously. The system includes a sensor configured to measure vehicle roll rate, a processor; and a computer-readable medium. The medium includes instructions that, when executed by the processor, cause the processor to perform operations comprising estimating, using an observer and the vehicle roll rate measured by the sensor, a vehicle roll rate. The operations also include estimating, using an observer and a measured vehicle roll rate, the vehicle roll angle, and estimating, based on the vehicle roll rate estimated and the vehicle roll angle estimated, the road bank angle.